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ABSTRACT

This paper presents a novel classification/ retrieval system for
motion events based on a perfect view invariant representa-
tion of motion trajectories and a linear classifier algorithm.
Specifically, Null Space Invariant (NSI) matrix representa-
tion for motion trajectories has been derived. The proposed
view invariant representation based on the NSI operator is in-
variant to affine transformations and preserves the null space
matrix. We use principal component null space analysis (PC-
NSA) for indexing and classification of the NSI operator for
recognition and retrieval of motion events. We rely on PC-
NSA to determine the distance of the query trajectory to the
centroid of each class, which is a statistical information vec-
tor in the PCNSA algorithm representing the corresponding
motion class. Our results show that NSI provides a power-
ful approach to motion event recognition and retrieval that is
invariant to affine transformations due to camera motion.

Index Terms— Trajectory Retrieval, Affine View Invari-
ants, Principal Component Analysis, Object Recognition and
Classification.

1. INTRODUCTION

Within the last several years, object motion trajectory-based
recognition has gained significant interest in diverse applica-
tion areas including sign language gesture recognition, Global
Positioning System (GPS), Car Navigation System (CNS),
animal mobility experiments, sports video trajectory analysis
and automatic video surveillance [1]. Psychological studies
show that human beings can easily discriminate and recognize
an object’s motion pattern even from large viewing distances
or poor visibility conditions where other features of the object
vanish.
The development of accurate activity classification and recog-
nition algorithms in multiple view situations is still an ex-
tremely challenging task. Object trajectories captured from
different view-points lead to completely different representa-
tions, which can be modeled by affine transformation approx-
imately. To get a view independent representation, the trajec-
tory data is represented in an affine invariant feature space.
A new invariant algorithm for Structure From Motion (SFM)
problem is proposed in [2]. It uses invariant property of group

action on a vector space to eliminate the camera pose param-
eters in the calculations. That enables robust solutions for
SFM. Although the invariant algorithm is promising to use in
recognition and classification problems, the requirement for
solving the invariant equations by Levenberg-Marquardt al-
gorithm introduces high computational complexity. In [1] two
different affine invariant representations for motion trajecto-
ries namely: Curvature Scale Space (CSS) and Centroid Dis-
tance Functions (CDF) have been used for trajectory recog-
nition and classification. However, the performance of these
techniques has been limited in the presence large number of
objects or classes.
In this paper, we introduce a simple but highly efficient view
invariant representation based on Null Space Invariant (NSI)
matrix [3]. As far as we know, this is the first use of Null
space in motion-based classification/retrieval applications.
Indexing and classification of the NSI operator is obtained
by extracting features of the null space representation using
Principal Components Null Space Analysis (PCNSA), which
provides an efficient analysis tool when different classes may
have different non-white noise covariance matrices [4]. Di-
mensionality reduction for indexing of the NSI is achieved
by first performing Principal Components Analysis (PCA) as
part of PCNSA. Classification is performed in PCNSA by de-
termining the ith classMi-dimensional subspace by choosing
theMi eigenvectors that give the smallest intra-class variance.
The Mi-dimensional space is referred to as the Approximate
Null Space (ANS). A query is classified into the class if its
distance to the class mean in ANS space is lowest among all
the other classes.
The rest of the paper is organized as follows: The new in-
variant representation is presented in Section 2. The PCNSA
algorithm is discussed in Section 3. Section 4 provides details
of the data set and simulation results. Finally, in Section 5, we
present a brief summary of our results.

2. NULL SPACE INVARIANT

A fundamental set of 2-D affine invariants for an ordered set
of n points in R2 (not all collinear) is expressed as an n-3
dimensional subspace, Hn−3, of Rn−1, which yields a point
in the 2n-6 dimensional Grassmannian GrR(n-3,n-1), which
also shows number of invariants is 2n-6 in 2-D.
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Null Space Invariant (NSI) of a trajectories matrix (each row
in the matrix corresponds to the positions of a single object
over time) is introduced as a new and powerful affine invariant
space to be used for trajectory representation. This invariant,
which is a linear subspace of a particular vector space, is the
most natural invariant and is definitely more general and more
robust than the familiar numerical invariants. It does not need
any assumptions and after invariant calculations it conserves
all the information of original raw data.
Let Qi = (xi, yi) be a single 2-D point, i = 0, 1, . . . , n −
1, among n ordered non-linear points in R2, representing a
trajectory. Consider the following arrangement of the n 2-D
points in a 3 × n matrix M:

M =

⎛
⎝

x0 x1 ... xn−1

y0 y1 ... yn−1

1 1 ... 1

⎞
⎠ (1)

(n-3)-dimensional linear subspaceHn−3 can be associated to
a 2-D trajectory whose features set is Q0, Q1, . . . , Qn−1:

Hn−3 = {q = (q0, q1, . . . , qn−1)T , i.e.Mq = (0, 0, 0)T } (2)

Since at least one determinant of 3× 3minor of M is not zero
because of non-linear feature points, Hn−3 has a dimension
of n-3. The attractive property of the linear subspace is that it
does not change when it undergoes any of the affine transfor-
mations. We use this new invariant of the trajectory matrix M
to represent each trajectory. Moreover,

Hn−3 ⊂ Rn−1 = {q = (q0, q1, . . . , qn−1)T ∈ Rn−1,

and

n−1∑
i=0

qi = 0} (3)

which produces (n-3)-planes in (n-1)-space, GrR(n − 3, n −
1). GrR(n − 3, n − 1) is a well understood manifold of
dimension 2n-6, which is the number of invariants associ-
ated to the matrix M. Hn−3 is spanned by the vectors vi =
(qi

0, q
i
1, . . . , q

i
n−1)

T ,i = 3, 4, . . . , n − 1, where

qi
0 = −det

⎛
⎝

x1 x2 xi

y1 y2 yi

1 1 1

⎞
⎠ /det

⎛
⎝

x0 x1 x2

y0 y1 y2

1 1 1

⎞
⎠ (4)

qi
1 = det

⎛
⎝

x0 x2 xi

y0 y2 yi

1 1 1

⎞
⎠ /det

⎛
⎝

x0 x1 x2

y0 y1 y2

1 1 1

⎞
⎠ (5)

qi
2 = −det

⎛
⎝

x0 x1 xi

y0 y1 yi

1 1 1

⎞
⎠ /det

⎛
⎝

x0 x1 x2

y0 y1 y2

1 1 1

⎞
⎠ (6)

qi
i = −1andqj

i = 0forj = 3, 4, . . . , i − 1, i + 1, . . . , n − 1 (7)

This is an elegant and simple method to find the null space of
a trajectory matrix M, which is also the most promising in-
variant of a trajectory. It is important to note that not every

basis representation of the null space can be used to form an
invariant matrix for a trajectory. For example, using the sin-
gular value decomposition (SVD) to form an orthogonal basis
of the null space would not guarantee an affine invariant rep-
resentation. Now each trajectory is represented now with a
matrixNSIn×(n−3), which is composed of vi columns, from
the trajectory matrix M3×n. While is an affine invariant ma-
trix, this representation increases the dimensionality signifi-
cantly, from 2n to n× (n− 3). We reduce the dimensionality
to a comparably small but effective value such as n by using
PCA.
Elements along the trajectory obtained from different camera
positions, e.g. moving camera, can be thought of as point-
wise affine transformations that are applied on the feature
points of a trajectory. It can be shown that affine transforma-
tions of the trajectory at each point results in an overall affine
transformation of the entire trajectory. LetAi denote a matrix
in SO(2) , i.e. a matrix with det(Ai) = 1 and AT

i Ai = I2

, where I2 is a 2 × 2 identity matrix. The matrix Ai rotates
any feature point Qi to a new point in R2 as Q′

i = AiQi

, for i = 0, 1, . . . , n − 1. We can now verify that Ā =⎛
⎝

A0 ... 0
... ... ...
0 ... An−1

⎞
⎠ is a 2n × 2n matrix in SO(2n),i.e.a

matrix such that det(Ā) = 1 and ĀT Ā = I2n×2n.

3. PRINCIPAL COMPONENT NULL SPACE
ANALYSIS

Once we have generated the affine invariant representation
provided by the null space operator, NSIn×(n−3), we can
rely on numerous methods for indexing and classification.
We choose a method for dimensionality-reduction and clas-
sification based on PCNSA. Notice that the term null space
used in PCNSA is meant that the Approximate Null Space
(ANS) used for representation of each class is formed from
the minimal eigenvectors within the class and thus minimizes
the intra-class variance. However, this process is not intended
to capture the null operator and is unrelated to the null space
invariant proposed in Section 2.
First, NSI is converted to P = n(n − 3) column vector Yp

which is assumed in class Ci and has Gaussian distribution
as Y |{Y ∈ Ci} ∼ N(μfull,i, Σfull,i), where μfull,i is the
class conditional mean and Σfull,i is the class conditional
covariance matrix. To decrease the high dimensionality due
to NSIn×(n−3), we perform Principal Component Analysis
(PCA), which removes the noise-only directions and retain
the directions that yield large inter-class variance. PCA takes
the L leading eigenvectors of covariance matrix, Σfull, of
the entire data taken from all classes. The total scatter ma-
trix, Σfull, can be written Σfull = Σfull,w + Σfull,b where
Σfull,w is within class covariance matrix andΣfull,b between
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class covariance matrix i.e.

Σfull,w =
1
C

C∑
i=1

1
K

K∑
k=1

(Y (i, k) − μfull,i)

(Y (i, k) − μfull,i)T , (8)

Σfull,b =
1
C

C∑
i=1

(μfull,i − μfull)(μfull,i − μfull)T , (9)

where i is for class index and k is for trajectory index in the
class. It is assumed that there are C classes in the system and
each class has K trajectories.
PCA gives the L-dimensional projection matrix (WPCA)P×L

and the projections into the PCA space are

(X)L×1 = WT
PCA(Y − μfull) ∼ N(μi, Σi) (10)

(μi)L×1 = WT
PCA(μfull,i − μfull) (11)

(Σi)L×L = WT
PCAΣfull,iWPCA (12)

After projections, in the PCA space PCNSA finds for each
class i an Mi dimensional subspace along which the class’s
intra-class variance is smallest. This subspace is referred to
as the Approximate Null Space (ANS) denoted as Ni since
the lowest eigenvalues’ corresponding eigenvectors are taken.
That means we choose the lowest noise variance directions as
for ANS.
Assumptions:

1. If λmax,i and λmin,i are the maximum and minimum
eigenvalues of Σi, there should be a threshold number
such that λmax,i/λmin,i > δ1 . This guarantees Ap-
proximate Null Space (ANS) for ith class.

2. There should be an another threshold number such that
|(μi − μj)T ei| > δ2‖μi − μj‖, where ei is any col-
umn of Ni. This guarantees that any class i is linearly
separable form other class j.

To get better solutions δ1 × δ2 multiplication should be high
i.e. δ1 = 107, δ2 = 10−4 can work. PCNSA Algorithm:

1. Obtain PCA Space: Evaluate the total covariance ma-
trix Σfull, then apply PCA to the Σfull to find
(WPCA)P×L, whose columns are the L leading eigen-
vectors.

2. Project the data vectors, class means and class covari-
ance matrices into the corresponding data vectors, class
means, and class covariance matrices in the PCA space.

3. Obtain ANS: Find the approximate null space (Ni)L×Mi ,
for each class i by choosing Mi smallest eigenvalues’
corresponding eigenvectors.

Fig. 1. Accuracy for motion trajectory classification with an
increasing number of classes.

4. Obtain Valid Classification Directions in ANS: Say
Ni = (ei,1|ei,2| . . . |ei,Mi

)L×Mi
. If any direction, ei

satisfies |(μi − μj)T ei| > δ2‖μi − μj‖, this direc-
tion is said valid direction and used to build valid ANS,
WNSA,i.

5. Classification: PCNSA finds distances from a query
trajectory to all classes

di(X) = ‖WNSA,i(X − μi)‖ . (13)

We choose the smallest distance to a class for classifi-
cation of X.

4. EXPERIMENTAL RESULTS

In order implement and evaluate the proposed classification
and retrieval system, we have used trajectories from the the
Australian Sign language (ASL) data set obtained from Uni-
versity of California at Irvine’s Knowledge Discovery in
Databases archive [5]. The trajectories in the data set are ob-
tained by registration of the hand coordinates at each succes-
sive instant of time by using a Power Glove interfaced to the
system. In our simulations, we used 40 different classes rep-
resenting signing of 40 different words in the data set. Each
class has 69 trajectories recorded at different instances.
Since in real life trajectories in a class may have differ-

ent lengths, we normalize the length by taking the Fourier
Transform and choosing the biggest n=32 coefficients and
then taking the Inverse Fourier Transform so that all the tra-
jectories are of size 32 before invariant matrix calculations.
The invariant matrix, , for each trajectory is certainly robust
to affine transformation such that it always preserves its val-
ues against rotation or translation operations. For all the sim-
ulations δ1 = 107, δ2 = 10−4 as thresholds and L = 32
in PCNSA. Although we did not show here, we note that in-
creasing L gives better results.
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Fig. 2. Accuracy for motion trajectory classification with an
increasing number of trajectories within each class.

Fig. 3. Precision-Recall metric for motion trajectory retrieval
using PCNSA on NSI.

Figure.1 depicts accuracy of the proposed classification sys-
tem versus number of classes. There are K = 20 trajectories
in each class word. Simulation results show that our system
preserves its efficiency even for higher number of different
classes.
Figure.2 depicts accuracy values versus increase in the num-
ber of trajectories within a class. There are C = 20 classes
in the system. Simulation results show that our system per-
formance deteriorates slightly for high number of trajectories
in a class. This problem can be resolved by using a hierarchi-
cal representation, where we first separate all the trajectories
in the system into a small number of classes, then repeatedly
divide each class into smaller classes until each class has a
sufficiently small number of trajectories. We can now use the
null space representation for each class in the nested hierar-
chical tree structure to obtain a scalable representation whose
performance is robust as the number of trajectories in the sys-
tem increases. Figure.3 shows Precision vs. Recall curves

for indexing and retrieval problem by using 40 classes, each
class having 20 trajectories. For retrieval problems, we com-
pute the distance of the query trajectory to any other trajectory
using PCNSA on NSI as D(Xi, Y ) = ‖WNSA,i(Xi − Y )‖,
where Y is the query trajectory. This distance is then used to
find α nearest trajectories, where α is a user specified param-
eter. There are two curves in Figure 3, one is with using PCA
on NSI directly, where PCA is basically used for dimension
reduction. As it can be seen from Figure 3 that the result of
using PCNSA on NSI is much superior to the one using PCA
on NSI directly.

5. CONCLUSION

We demonstrated the enormous potential of the NSI opera-
tor as a powerful view-invariant representation for recogni-
tion and retrieval. The computational complexity of NSI is
very low and it possesses several important features, e.g. gen-
erality, robustness, and preserves information of the original
data when computing invariants. We have also shown that
the increased dimensionality of the NSI matrix representation
can be effectively reduced by PCA. Moreover, any classifica-
tion algorithms can be used based on PCA representation of
the NSI operator. We further demonstrated the performance
of classification of motion trajectories based on NSI and PC-
NSA in recognition and retrieval applications.
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