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Abstract—Due to memory bandwidth limitations and compu-
tational complexity considerations in hardware implementations,
block matching combined with �1 error norm and translational
motion model is preferred in motion-estimation algorithms. Perfor-
mance of this scheme is degraded by noise, compression artifacts,
rotation, repeating structures, motion boundaries, zooming, and
brightness changes. In this work, we present a Bayesian approach
to incorporate prior information into block matching. Hypothesis
testing is utilized to choose the most applicable prior motion vector
and to compute a prior motion-vector distribution and its precision.
Prior distribution is then updated with motion-vector likelihood
derived from pixel data to obtain the posterior distribution, which
is maximized via a search on the feasible motion-vector space.

Keywords—Motion estimation, block matching, prior motion
information.

I. INTRODUCTION

Motion estimation facilitates applications such as motion-

compensated noise reduction, frame rate conversion, de-

interlacing, and compression [1][2]. Block matching combined

with translational-motion model and constancy of brightness

assumption is preferred in hardware implementations. In block

matching, the motion model applies to all pixels in a block,

which simplifies memory access and resource requirements. To

improve the performance, efficient buffering algorithms can be

designed to fetch a block of pixel data in a small number of

clock cycles [3]. However, when there is motion boundaries

and/or deformation of objects, block matching can produce large

errors in the motion-vector field. Translational-motion model

reduces the computation and is sometimes even more robust

to noise when compared to more complex models such as

the affine motion model [4]. But it fails in the presence of

rotation and zooming. After choosing the translational-motion

model and its block based region of support, one needs to

specify the estimation criteria of the model parameters (i.e.,
x and y components of the motion vector). The constancy of

brightness assumption tries to minimize the error between a

pixel’s intensity and its motion-compensated prediction’s inten-

sity. In hardware implementations, �1 norm is used in measuring

the error magnitude. Compared to �2 norm, �1 norm is more

robust in the presence of outliers and saves a multiplication

operation [4][5]. �1 norm accumulated over all pixels in a block

is called Sum of Absolute Deviations (SAD). SAD minimization

is not sufficient to find true motion vectors, and performs poorly

when the brightness in the scene changes.

Clearly, motion estimation is an ill-posed problem, which

requires extra information other than pixel intensity data. Spatial

and temporal correlation of the motion-vector fields can be used

to regularize the motion estimation problem. Spatial correlation

is induced because objects are usually larger than blocks [6].

Moreover, objects usually follow motion trajectories that does

not abruptly change, which leads to temporal correlation. Tthe

Bayesian framework is promising way to incorporate the prior

information. Using Bayes law, a posterior probability for p(v|d)
of a realized motion-vector field v is computed by p(d|v)p(v) up

to a normalization constant, where p(d|v) is the data likelihood,

and p(v) is the prior information.

Markov Random Fields (MRF) is a well-known method

to impose spatial correlation. Maximum a posteriori (MAP)

estimation of an MRF was introduced into computer vision

by Geman and Geman [7]. The MAP-MRF framework can be

expressed as an energy-minimization problem. Theoretically,

it is possible to find the global minimum using simulated

annealing, which is too slow to converge for practical purposes.

Recently, approximation algorithms has been designed using

graph cuts that iteratively updates the motion field [8][9]. Gen-

erally, energy-minimization based motion-estimation algorithms

encode only the spatial correlation information via a spatial

discontinuity-penalty term in the energy. The computational

complexity of an energy-minimization problem that has tem-

poral discontinuity will be too high, especially for hardware

implementations: the temporal discontinuity-penalty term using

the previous frame would require updating the previous frame’s

motion-vector field.

Spatial correlation by itself is not sufficient for creating

a high-quality motion-vector field. One still needs to utilize

the temporal correlation between the previous frame’s already

computed motion-vector field and the current frame’s motion-

vector field. By assuming independency, we rewrite p(v) as

ps(v)ps(v), where the two terms denote spatial and non-

spatial prior motion information. ps(v) encodes the temporal

correlation between frames, and MAP estimate of p(v|d) can

be performed on the current motion-vector field. In addition

we show how to use ps(v) to pass information from previous

resolutions in hierarchical motion estimation. Since, we do not

update the previously computed motion-vector field of previous

frame or previous resolution, we need to choose which motion

vector to use in ps(v) formulation. We present the prior motion-

vector selection as a multi-hypothesis testing problem, and use

the evidence for the winning hypothesis to adjust the precision1

1We refer to reliability of the prior as precision, following the convention for
Gaussian distribution, which we use to model the prior distribution.
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Fig. 1. Nine motion vectors from the previous frame are hypothesized for the
block (shown as black) in the current frame)

of ps(v)2.

II. MOTION ESTIMATION VIA BLOCK MATCHING

In this section, we will present our Bayesian approach to

incorporate non-spatial prior motion information into block

matching.

Usually, there are more than one possible prior motion

vectors (vp
i ) available (e.g., see Figure 1)3. Unfortunately, we

do not know which block’s motion vector in the previous frame

applies to the current block, because this is actually the motion

estimation problem we are trying to solve. But we can expect

that the current block must be a displaced version of one of

the blocks that are not too far from its location in the previous

frame. To choose the best vp
i from a set of motion vectors, {vp

i },

we use multiple hypothesis testing, which is described next.

A. Multiple Hypothesis Testing for Prior Selection

We have a set of hypotheses {H1,H2, . . . , HN} to be tested.

Hi hypothesizes that the motion vector v is equal to vp
i from

the previous frame. We want to find the hypothesis that has the

highest evidence. The evidence value for Hi is defined as

e(Hi) = ln
p(Hi|d, vp)
p(Hi|d, vp)

, (1)

where d denotes data (pixel intensities), vp denotes prior infor-

mation on previous frame’s motion vectors, and Hi implies

Hi is false [10]. p(Hi|d, vp) and p(Hi|d, vp) are posterior

probabilities of Hi and Hi obtained via Bayes Law:

p(Hi|d, vp) = p(Hi|vp)
p(d|Hi, v

p)
p(d|vp)

, (2)

p(Hi|d, vp) = p(Hi|vp)
p(d|Hi, v

p)
p(d|vp)

, (3)

where p(Hi|vp) and p(Hi|vp) denote prior information on Hi

and Hi, respectively.

Using (2) and (3) in (1)

e(Hi) = ln
p(Hi|vp)p(d|Hi, v

p)
p(Hi|vp)p(d|Hi, vp)

(4)

By applications of Bayes Law on p(d|Hi, v
p), e(Hi) be-

comes

e(Hi) = ln
p(d|Hi, v

p)p(Hi|vp)
N∑

k=1,s.t.k �=i

p(d|Hk, vp)p(Hk|vp)

. (5)

2From now on, we will drop the superscript s for notational simplicity.
3Superscript p denotes data from the previous frame.

In the above formula, p(Hi|vp) represents our prior informa-

tion on Hi before observing any data (i.e. the current frame).

Generally, motion estimation algorithms output a motion vector

and an associated confidence value cp
i for that motion vector.

Hence, before processing a new frame if we know that vp
i has

a high confidence, then it is more likely to be an estimate of a

true motion in the image. This makes it more likely to survive

in the new frame. Therefore, we can compute p(Hi|vp) by

p(Hi|vp) =
cp
i∑N

k=1 cp
k

. (6)

To select the best prior, we solve

i∗ = arg max
i∈{1,2,...,N}

e(Hi). (7)

However, if we do not use any prior information on Hi’s by

assuming p(Hi|vp) is uniform, (5) is simplified to

e(Hi) = ln
p(d|Hi, v

p)
N∑

k=1,

p(d|Hk, vp) − p(d|Hi, v
p)

. (8)

Since e(Hi) in (8) is a strictly increasing function of

p(d|Hi, v
p), maximization problem in (7) becomes

i∗ = arg max
i∈{1,2,...,N}

p(d|Hi, v
p), (9)

which is simpler and does not involve division as in (7).

Although solving the simpler maximization in (9) gives the

optimal i∗ for the maximization in (7) by assuming uniform

prior on Hi’s, we still need to compute e(Hi). This is because

we use the top two largest evidence values, e(Hi∗) and e(Hi∗∗)
to adjust the precision, 1

σ2 , of p(v) as below

1
σ2

= f(e(Hi∗) − e(Hi∗∗)), (10)

where f is a non-decreasing, non-negative function. A large

difference between the two largest evidence values implies that

the two hypothesis are well separated and we can be more

certain that our decision of selecting Hi∗ is right.

We would like to simplify e(Hi) further by an approximation.

When the evidence is large for Hi∗ (i.e., p(d|Hi∗ , v
p) is large),

it should be saturated to avoid assigning too high 1
σ2 . When

the evidence is small, we want to adjust 1
σ2 by (10). Hence,

our approximation of e(Hi) should especially work well for

small p(d|Hi, v
p). For

∑N
k=1, p(d|Hk, vp) � p(d|Hi, v

p), we

can approximate e(Hi) by

e(Hi) = ln
p(d|Hi, v

p)
N∑

k=1,

p(d|Hk, vp)

. (11)

Substituting (11) in (10), we get

1
σ2

= f(ln p(d|Hi∗ , v
p) − ln p(d|Hi∗∗ , v

p)), (12)

which is the difference of the likelihoods of the top-two

hypothesis.

Above formula for 1
σ2 measures if Hi∗ is well separated from

the rest of the hypothesis or not. However, the way we set our

hypotheses can reduce the inference of a good Hi∗ . Our Hi’s

are simple hypotheses meaning that each hypothesis specifies a

single value to v (i.e., Hi : v = vp
i ). This means that close but
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not identical (e.g., sub-pixel different) vp
i ’s all of which applies

well to the current frame, can be assigned to different Hi’s. But

from (11), 1
σ2 will be small since both Hi∗ and Hi∗∗ will have

high likelihoods. To overcome this, one can impose a minimum

distance among the hypothesized vp
i ’s.

One last improvement on our hypotheses set is to include a

dummy hypothesis, HD, to represent cases like occlusion and

scene change in which no prior motion information is available

for the next frame. Adding a dummy hypothesis enables us

to choose HD when evidence for vp
i ’s are small. Obviously,

the likelihood given HD does not depend on pixel intensity

differences, hence we set p(d|HD, vp) = ε, where ε is a small

number. When HD is selected, we do not have any informative

prior information p(v) to update p(d|v) because there is no

match of pixels by the definition of HD. Therefore, we need

to set 1
σ2 to zero. To do this by smoothly changing 1

σ2 as HD

becomes more likely to be accepted, we can modify (10) to

1

σ2
= f [(ln p(d|Hi∗ , vp)− ln p(d|Hi∗∗ , vp))(ln p(d|Hi∗ , vp)− ln ε)].

(13)

As the likelihood p(d|Hi∗ , v
p) of the selected hypothesis Hi∗

decreases (HD becomes more plausible), the precision 1
σ2 of

the prior information also decreases and becomes exactly zero

when HD is selected.

B. Computing the Posterior Distribution

After selecting the prior motion vector vp
i∗ and computing

its precision 1
σ2 , we need to model the prior distribution p(v).

We expect the true motion vector to be closely distributed

around vp
i∗ , and 1

σ2 hints how close this is. In a sense, vp
i∗

and 1
σ2 specifies the first and the second moments of the prior

distribution. To avoid imposing any further constraints on the

prior distribution, Gaussian distribution is chosen to model p(v)
according to the principle of maximum entropy [10]

p(v) =
1√
2πσ

e−
1

2σ2 (v−vp
i∗ )′(v−vp

i∗ ), (14)

which assumes horizontal and vertical deviations from vp
i are

not correlated.

The error between a pixel x’s intensity and its reference

pixel’s intensity obtained by motion compensating with v is

denoted by dx
v , and it is created by many error sources such

as noise, aliasing, compression artifacts, deformation, zooming,

rotation, brightness change, etc. Again, by the principle of

maximum entropy to account for all these sources Gaussian

distribution is used for modeling data likelihood

p(dx
v |v) =

1√
2πτ

e−
1

2τ2 dx
v
2
, (15)

where τ is a constant variance term reflecting the strength of

the above mentioned error sources in the video sequence. Since

block matching assumes the same motion vector v applies to

all pixels in block B, the data likelihood for B is

p(d|v) =
∏

x∈B

p(dx
v |v), (16)

=
1√
2πτ

e

− 1
2τ2

∑

x∈B

dx
v
2,

(17)

by assuming dx
v ’s are independently distributed.

From (17) and (14), the posterior distribution of v is

p(v|d) ∝ p(d|v)p(v)

∝ 1
2πστ

e

− 1
2τ2

∑

x∈B

dx
v
2

e−
1

2σ2 (v−vp
i∗ )′(v−vp

i∗ ) (18)

The log of the posterior is

log p(v|d) ∝ − 1
2τ2

∑

x∈B

dx
v
2 − 1

2σ2
(v − vp

i∗)
′(v − vp

∗i) (19)

MAP estimate, vMAP , is found by minimizing − log p(v|d)
given by

vMAP = arg min
v

1
2τ2

∑

x∈B

dx
v
2 +

1
2σ2

(v−vp
i∗)

′(v−vp
∗i). (20)

Substituting (17) in (13), 1
σ2 can also be simplified to

1
σ2

= f [(
1

2τ2

∑

x∈B

dx
vp

i∗∗
2− 1

2τ2

∑

x∈B

dx
vp

i∗
2)(ln

1
ε
− 1

2τ2

∑

x∈B

dx
vp

i∗
2)].

(21)

Inspecting (20), we can see that the MAP estimate minimizes

a bi-criterion cost function. The first term is the data term, which

is a sum of square errors (SSE). The second term penalizes

deviations from the hypothesized motion vector. The weight

of the second term is adjusted by how well the hypothesized

motion vector applies to the current block B, which is inferred

using (21). If the data likelihood and prior distributions are

modeled with Laplace distribution instead of a Gaussian distri-

bution, all the SSE terms in (20) and (21) would be SAD terms,

which is more hardware friendly. Searching for the minimum

of the first term alone corresponds to regular block matching

that minimizes SAD.

The search window, S, is exhaustively searched for find-

ing vMAP . Heuristics search algorithms such as three-step

search [11], cross-search [12] for minimizing (20) can also be

used instead of an exhaustive search. Furthermore, although

the first term is a non-convex cost function, the second term

is a convex cost function, which becomes more dominant as

v’s distant from vp
i∗ are searched. This can be taken advantage

of, while designing heuristic search algorithms specifically for

minimizing (20). More costly searches such as full-search can

be performed when non-convex cost function is dominant (i.e.,
v’s close to vp

i∗) to avoid getting stuck at a local minimum, and

heuristic search patterns can be utilized otherwise.

C. Choosing The Best Set of Hypotheses

To incorporate prior motion information from the previous

frame, the hypothesis set should cover a large enough area in

the previous frame that contains B’s pixels while keeping the

computation at an acceptable level. Obviously, this depends on

the motion type. As shown in Figure 1, in addition to B’s collo-

cated block in the previous frame, its 3×3 block neighborhood

can also be used. With the dummy hypothesis, this will make a

total of ten hypotheses to utilize the available prior information

from the previous frame. In hierarchical motion estimation, the

hypothesis set needs to be designed differently. For example,

if down-sampling by two is performed to create the coarser

resolution frame from the finer resolution frame, B in the finer

resolution will effectively correspond to a quarter-sized block

in the coarser resolution. Hence, its motion information may

be lost if there is a motion boundary in the whole block. To
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(a) (b)

Fig. 2. Block matching results for a two-resolution hierarchical motion estimation: (a) SAD minimization (b) minimization of bi-criterion cost in Equation (20).

(a) (b)

Fig. 3. Block matching results for passing prior motion information from the
previous frame: (a) SAD minimization (b) minimization of bi-criterion cost in
Equation (20).

include this lost information in our hypothesis set, we need

to use other neighbor blocks in the coarse resolution. For any

B at location (r, c), corresponding to row and column number

respectively, we need to use four blocks in the coarse resolution

to account for all possible motion boundary directions. These

four blocks are located at (� r+1
2 �, � c+1

2 �), (� r+1
2 − 1�, � c+1

2 �),
(� r+1

2 �, � c+1
2 − 1�), (� r+1

2 − 1�, � c+1
2 − 1�). With the dummy

hypothesis, there will be five hypotheses in our set.

III. EXPERIMENT RESULTS

We tested our proposed method using standard video test

sequences. In all the test sequences, using prior motion in-

formation has improved the quality of the motion-vector field.

Due to space limitations, we present some visual results from

the Mobile and Calendar sequence. In the following figures,

motion vector of a block is represented with a white line and

its direction is denoted by a block dot. Unfortunately, we can not

do any mean square error (MSE) comparison by measuring the

error between the original image and the reconstructed image

via motion compensation. It is obvious from (20) that SAD

minimization will always give a better MSE because of our

second cost term. Therefore, we present visual results in which

motion vectors are amplified by two.

Our first result demonstrates the improvement provided by

passing prior motion information from a hierarchical motion es-

timation with two resolution levels. Figure 2(a), and 2(b) shows

the motion-vector field from the 25th frame, produced by SAD

minimization and our proposed bi-criterion cost minimization

in (20). The hypothesis set is as described in Section II-C. Due

to noise in the image, there are some random motion vectors in

Figure 2(a), which are worst in the smooth areas on the calendar.

The motion-vector field in Figure 2(b) looks more consistent,

most of the random vectors are corrected with the help of the

prior information passed from the previous resolution.

The next result is produced by passing prior motion infor-

mation from the previous frame. Figure 3(a) and Figure 3(b),

shows the motion-vector field from the 22nd frame produced

by SAD minimization and our proposed method, respectively.

Using the previous frame our proposed method improves the

performance of block matching for repeating structures (i.e.,
spiral calendar perforations).

It is important to note that, the quality of the motion-vector

field still needs to be improved using an energy-minimization

algorithm that imposes a spatial regularization as described in

Section I.
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