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ABSTRACT

This paper presents a method for automatic recognition of hu-
man gestures. The method works with 3D image data from a range
camera to achieve invariance to viewpoint. The recognition is based
solely on motion from characteristic instances of the gestures. These
instances are denoted 3D motion primitives. The method extracts 3D
motion from range images and represent the motion from each input
frame in a view invariant manner using harmonic shape context. The
harmonic shape context is classified as a 3D motion primitive. A se-
quence of input frames results in a set of primitives that are classified
as a gesture using a probabilistic edit distance method. The system
has been trained on frontal images (0◦ camera rotation) and tested
on 240 video sequences from 0◦ and 45◦. An overall recognition
rate of 82.9% is achieved. The recognition rate is independent of the
viewpoint which shows that the method is indeed view invariant.

Index Terms— Machine vision, stereo vision, gesture recogni-
tion, view invariant, 3D motion primitives

1. INTRODUCTION

In human communication gestures are widely used to convey or em-
phasise information and the automatic recognition of gestures has
therefore rechieved much attention in many areas of computer vi-
sion research. Reconstruction of humans and their exact pose has
been a widely used approach but a current trend is to do recognition
directly on image data, e.g. silhouette data [1, 2] or spatio-temporal
features [3, 4].

All systems relying on information extracted from 2D images
are faced with the common problem that the 2D image is a projec-
tion of the 3D gestures. Some overcome this by merely addressing
gestures carried out in a plane parallel to the camera-plane. To han-
dle different view-points a new class can be learned for each gesture
for each view-point (given some resolution). This leads to even more
tedious training and the risk that too many classes might lead to over-
lap in the feature-space, which again results in reduced recognition
rates. Furthermore, some gestures might be ambiguous in such a
systems. E.g., a ”point right” gesture seen from the front is similar
to a ”point straight ahead” gesture seen from a side view. To over-
come such problems recent methods have investigated the use of 3D
data as opposed to 2D image data [1, 5].

We are interested in the general case of recognizing 3D gestures
from different viewpoints and therefore apply 3D data. We want to
avoid the possible problems inherent to classical stereo approaches
(the correspondence problem, careful camera placement and calibra-
tion) as used in [1, 5] and instead apply a 3D range camera.

In this paper we aim at view invariant gesture recognition di-
rectly on range data. Recognizing gestures directly on range data
can be based on data from all frames constituting that gesture, e.g. a
trajectory through some state-space. A more flexible approach is to
define and recognize gestures by a set of primitives [2]. We represent

gestures as an ordered sequence of 3D motion primitives (temporal
instances). We focus on arm gestures and therefore only segment
the arms (when they move) and hereby suppress the rest of the (ir-
relevant) body information. Concretely we use 3D double difference
images to extract the moving arms and represent this data by their
Shape Context. We make the primitives invariant to rotation around
the vertical axis by re-representing the Shape Context using Spher-
ical Harmonic basis functions, yielding a Harmonic Shape Context
representation.

In each frame the primitive, if any, that best explains the ob-
served data is identified leading to a discrete recognition problem
since a video sequence of range data will be converted into a string
containing a sequence of symbols, each representing a primitive. Af-
ter pruning the string a probabilistic Edit Distance classifier is ap-
plied to identify which gesture best describes the pruned string. Our
approach is illustrated in figure 1.

2. SEGMENTATION

2.1. Data Acquisition

We capture 3D data using a CSEM SwissRanger SR-2 range camera
(see figure 1) [6]. The camera is based on the Time-Of-Flight princi-
ple and emits radio-frequency modulated light in the near-infrared
spectrum, which is backscattered by the scene and detected by a
CMOS CCD. The resolution is 160×124 pixels with an active range
of 7.5 m. The depth accuracy is typically in the order of a few cen-
timeters, depending of the distance range and illumination. Figure
2(left) shows a range image of one time instant of a point right ges-
ture.

Fig. 2. Left: A range image, where the pixel values correspond to a
distance. Middle: The difference range image used for motion de-
tection. Right: The resulting motion detected in 2D after hysteresis
bandpass filtering and creation of a double difference image.

2.2. 3D Motion Detection

We detect movements (of the arms) using a 3D version of 2D double
differencing [7]. This is done by subtracting the depth values pixel-
wise in two pairs of depth images (see figure 2(middle)), threshold-
ing and finally ANDing the two binary images. The moving arm
(and its shadow) is visible in the binary image, but so is a large
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Fig. 1. An overview of the range based gesture recognition system. Note that the feedback loop illustrates that a number of frames are
processed before recognition of gestures commences.

amount of noise due to erroneous depth values often produced by
the SwissRanger camera. To handle these noise effects, each of the
two 3D difference images is filtered with a hysteresis bandpass fil-
ter before they are ANDed together (see figure 2(right)). This filter
operates in 2D and uses four threshold values T1, T2, T3 and T4.
The 3D difference values that fall within the motion range [T2, T3]
are most likely to originate from arm movements. Pixels in the range
[T1, T2]

⋃
[T3, T4] are also classified as belonging to the arm if and

only if they are connected with pixels from [T2, T3]. This hystere-
sis principle yields less fragmented motion regions while excluding
noisy image regions. Too small motion regions caused by noise or
unwanted motion along the body are filtered by a size criterion.

3. MOTION PRIMITIVES

3.1. Shape Context

After detecting the motion we are left with a point cloud in 3D (see
figure 1). We represents this data efficiently using shape context [8].
A shape context is based on a spherical histogram. This histogram is
centered in a reference point (center of gravity of the human body)
and divided linearly into S = 12 azimuthal (east-west) bins and T
= 12 colatitudinal (north-south) bins, while the radial direction is
divided into U = 5 bins. The radial division is made in steps of 30 cm.
The value of a bin is given by the number of 3D points falling within
that particular bin. This results in an n (S×T ×U = 12×12×5 =
720) dimensional feature vector for each frame. Figure 3 gives an
example of the shape context descriptor.

Fig. 3. A horizontal and a vertical cross-section of a Shape context
descriptor.

3.2. View Invariant Representation: Harmonic Shape Context

By introducing spherical harmonics we can eliminate one of the two
rotational parameters in a shape context descriptor. We eliminate the
rotation around the vertical axis, see figure 3, and hereby make our
representation invariant to variations in this parameter.

Any given spherical function, i.e. a function f (θ, φ) defined
on the surface of a sphere parameterized by the colatitudinal and
azimuthal variables θ and φ, can be decomposed into a weighted
sum of spherical harmonics as given by equation 1.

f (θ, φ) =

∞∑

l=0

l∑

m=−l

Am
l Y m

l (θ, φ) (1)

The term Am
l are the weighing coefficient of degree m and order

l, while the complex functions Y m
l (·) are the actual spherical har-

monic functions of degree m and order l. The following states the
key advantages of the mathematical transform based on the family of
orthogonal basis functions in the form of spherical harmonics. The
complex function Y m

l (·) is given by equation 2.

Y m
l (θ, φ) = Km

l P
|m|
l (cos θ) ejmφ (2)

The termKm
l is a normalization constant, while the functionP

|m|
l (·)

is the associated Legendre Polynomial. The key feature to note from
equation 2 is the encoding of the azimuthal variable φ. The az-
imuthal variable solely inflects the phase of the spherical harmonic
function and has no effect on the magnitude. This effectively means
that ||Am

l ||, i.e. the norm of the decomposition coefficients of equa-
tion 1 is invariant to parametrization in the variable φ.

The actual determination of the spherical harmonic coefficients
is based on an inverse summation as given by equation 3, where
N is the number of samples (S × T ). The normalization constant
4π/N originates from the fact, that equation 3 is a discretization of
a continuous double integral in spherical coordinates, i.e. 4π/N is
the surface area of each sample on the unit sphere.

(Am
l )

fu

=
4π

N

2π∑

φ=0

π∑

θ=0

fu (θ, φ) Y m
l (θ, φ) (3)

In a practical application it is not necessary (or possible, as there are
infinitely many) to keep all coefficient Am

l . Contrary, it is assumed
the functions fu (fu are the spherical functions for u ∈ [0; U − 1])
are band-limited why it is only necessary to keep coefficient up to
some bandwidth. Concretely we use 136 coefficients (see figure 1).
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4. CLASSIFICATION

The classification is devided into two main tasks: recognition of mo-
tion primitives by use of the harmonic shape context descriptors, and
recognition of the actual gestures using an ordered sequence of prim-
itives (see figure 1).

4.1. Recognition of Primitives: Correlation

A motion primitive is recognized by matching the current harmonic
shape context with a known set, one for each possible primitive. The
actual comparison of two harmonic shape contexts is done by the
normalized correlation coefficient. To this end each harmonic shape
context is represented as a vector of length n containing the (stacked)
spherical harmonic coefficients for the specific surface region.

The system is trained by generating a representative set of de-
scriptors for each primitive. A reference descriptor is then estimated
as the average of all these descriptors for each class (primitive).

After processing a sequence the output will be a string with the
same length as the sequence. An example is illustrated in equation 4.
Each letter corresponds to a recognized primitive andØ corresponds
to time instances where no primitives are detected. The string is
pruned by first removing ’Ø’s, isolated instances, and then all re-
peated letters, see equation 5. A weight is generated to reflect the
number of repeated letters (this is used below).

String = {Ø, Ø,B, B, B, B, B, E, A, A, F, F, F, F, Ø, D,

D, G, G, G, G, Ø} (4)
String = {B, A,F, D, G} (5)

Weights = {5, 2, 4, 2, 4} (6)

4.2. Recognition of Gestures: Probabilistic Edit Distance

The result of recognizing the primitives is a string of letters referring
to the known primitives. During a training phase a string represen-
tation of each gesture to be recognized is learned. The task is now
to compare each of the learned gestures (strings) with the detected
string. Since the learned strings and the detected strings (possibly
including errors!) will in general not have the same length, the stan-
dard pattern recognition methods will not suffice. We therefore apply
the Edit Distance method [9], which can handle matching of strings
of different lengths.

The edit distance is a well known method for comparing words
or text strings, e.g., for spell-checking and plagiarism detection. It
operates by measuring the distance between two strings in terms of
the number of operations needed in order to transform one to the
other. There are three possible operations: insert a letter from the
other string, delete a letter, and exchange a letter by one from the
other string. Whenever one of these operations is required in order
to make the strings more similar, the score or distance is increased
by one. The algorithm is illustrated in figure 4 where the strings
motions and octane are compared.

The first step is initialization. The two strings are placed along
the sides of the matrix, and increasing numbers are place along the
borders beside the strings. Hereafter the matrix is filled cell by cell
by traversing one column at a time. Each cell is given the smallest
value of the following four operations:

Insert: The value of the cell above + 1
Delete: The value of the cell to the left + 1
Exchange: The value of the cell up-left + 1

No change: The value of the cell up-left + 0. This is the case when
the letters in question in the two stings are the same.

Using these rules the matrix is filled and the value found at the
bottom right corner is the edit distance required in order to map one
string into the other, i.e., the distance between the two strings. The
actual sequence of operations can be found by back-tracing the ma-
trix. Note that often more paths are possible.
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Fig. 4. Measuring the distance between two strings using edit dis-
tance.

When the strings representing the gestures are of different lengths,
the method tends to favor the shorter strings. Say we have detected
the string {B, C, D} and want to classify it as being one of the two
gestures: #1 = {J, C, G} and #2 = {A, B, C, D, H}. The edit
distance from the detected string to the gesture-strings will be two in
both cases. However, it seems more likely that the correct interpre-
tation is that the detected string comes from gesture #2 in a situation
where the start and end has been corrupted by noise. In fact, 2 out
of 3 of the primitives have to be changed for gesture #1 whereas
only 2 out of 5 have to be changed for gesture #2. We therefore nor-
malize the edit distance by dividing the output by the length of the
gesture-string, yielding 0.67 for gesture #1 and 0.2 for gesture #2,
i.e., gesture #2 is recognized.

The edit distance is a deterministic method but by changing the
cost of each of the three operations with respect to likelihoods it
becomes a probabilistic method1. Concretely we apply the weights
described above, see equation 6. These to some extent represent the
likelihood of a certain primitive being correct. The higher the weight
the more likely a primitive will be. We incorporate the weights into
the edit distance method by increasing the score by the weight mul-
tiplied by β (a scaling factor) whenever a primitive is deleted or ex-
changed. The cost of inserting remains 1.

The above principle works for situations where the input se-
quence only contains one gesture (possibly corrupted by noise). In a
real scenario, however, we will have sequences which are potentially
much longer than an gesture and which might include more gestures
after each other. The gesture recognition problem is therefore formu-
lated as for each gesture to find the substring in the detected string,
which has the minimum edit distance. The recognized gesture will
then be the one of the substrings with the minimum distance. Denot-
ing the start point and length of the substring, s and l, respectively,
we recognize the gesture present in the detected string as:

Gesture = arg min
k,s,l

PED(Λ, k, s, l) (7)

where k index the different gestures, Λ is the detected string, and
PED(·) is the probabilistic edit distance.

1This is related to the Weighted Edit Distance method, which however
has fixed weights.
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5. TEST AND RESULTS

For testing purpose we use a vocabulary consisting of 11 primitives.
This is illustrated in figure 5. The criteria for finding the primitives
are 1) that they represent characteristic and representative 3D con-
figurations, 2) that their configurations contain a certain amount of
motion, and 3) that the primitives are used in the description of as
many gestures as possible, i.e., fewer primitives are required. By use
of this vocabulary of primitives we describe 4 one- and two-arms
gestures: ”Point right”, ”raise arm”, ”clap” and ”wave”.

Fig. 5. The vocabulary consisting of 11 primitives. The primitves
are illustrated by range images of the arm configurations, which are
color coded. The color can vary slightly due to error pixels and
normalization.

We test the system on range data recorded of 10 test subjects,
each performing the four gestures 3 times from a 0◦ and 45◦ view-
point with respect to the camera. A total of 240 video sequences have
been recorded. Figure 6 shows an example of the visual differences
that occur when a gesture is performed from these two viewpoints.

Fig. 6. Range data examples of a time instance from a video se-
quence including a person carrying out a ”clap” gesture shown from
a 0◦ and 45◦ camera viewpoint.

To evaluate the view invariance of the system, the data which is
used to train the motion primitives is only from the 0◦ viewpoint.
The overall matching rate is 82.9% and the error distribution can be
seen in the confusion matrix in figure 7. In comparison, when only
testing on sequences from 0◦ we obtain a recognition rate of 84.2%.

Fig. 7. Test results (given in percentages) for the 4 gestures recorded
from a 0◦ and 45◦ viewpoint with respect to the camera.

No significant increase in error can be observed when train-
ing and testing on sequences from different viewpoints, i.e., the ap-
proach is indeed view invariant. The errors observed in both tests
are mainly due to personal variations when performing gestures like
“point right” and “raise arm”. I.e., some tend to raise their arm above
the shoulder while pointing while some do not stretch their arm fully

when raising their arm. Another example is in the case of a ”clap”
gesture, where one of the arms might not be visible or segmented
properly due to a too extreme viewpoint when the individual per-
forms this gesture. Hence a ”clap” gesture might be classified to
be more likely a ”point right” gesture. Furthermore, the points in-
cluded in the motion cloud are not perfectly located at the arms but
stretches backwards. These miss-located points can cause impact on
the primitive descriptors, and hereby lead to errors.

6. CONCLUSION

In this paper we have presented a method for view invariant ges-
ture recognition. Our approach does not rely on information from
an entire video sequence but perform gesture recognition using tem-
poral instances that only represent a subset of the original sequence.
We have applied a range camera and segment 3D primitives based
on motion. These are represented compactly and view invariant us-
ing harmonic shape context. A probabilistic Edit Distance classi-
fier is applied to identify which gesture best describes a string of
primitives. We have evaluated the method on 240 video sequences
recorded from a 0◦ and 45◦ viewpoint with respect to the camera.
The results indicate a valid approach of recognizing 82.9% of the
gestures correctly. It should be noted that the classifier is trained on
gestures from only one view (0◦) and tested on gestures from a very
different view (45◦). With this test scenario we have shown that the
method is indeed view invariant.
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