
A SPATIALLY RECURSIVE OPTICAL FLOW ESTIMATION FRAMEWORK
USING ADAPTIVE FILTERING

Teahyung Lee and David V. Anderson

School of Electrical and Computer Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332–0250 Email: taehyung,dva@ece.gatech.edu

ABSTRACT
In this paper, we propose a spatially recursive optical flow

estimation (OFE) framework using adaptive filtering. One

of most successful OFE algorithms is a gradient-based least-

squares (LS) within a local image window because of high

performance and low-complexity. However, it has some re-

dundancies for calculating successive LS among adjacent pix-

els. Therefore, we suggest an efficient framework using re-

cursive least-squares (RLS) and adaptive filtering to improve

the computational efficiency. The performance and compu-

tational complexity are compared to least-squares OFE and

spatially recursive OFE algorithms. Based on these results,

we conclude that our proposed algorithm framework under

proper window size can reduce computational complexity es-

pecially as the number of motion modeling parameters in-

creases by using the property of RLS and adaptive filtering.

Index Terms— Motion analysis, least squares methods,

recursive estimation, machine vision, image processing

1. INTRODUCTION
In computer vision and image processing, optical flow fields

are often used for processing a sequence of images. Applica-

tions of optical flow estimation range from video compression

to three-dimensional (3-D) surface structure estimation to ob-

ject tracking.

Based on simulation results in [1] and [2], a gradient-

based optical flow estimation (OFE) algorithm using a least-

squares (LS) technique is one of most successful solutions in

terms of performance and the number of operations. How-

ever, it has some redundancies for calculating successive LS

among adjacent pixels. As video frame rate and/or video for-

mat size per each frame increase, it is important to find more

efficient ways of estimating motion information.

Previous work regarding efficient optical flow estimation

algorithms are reported in [3], [4]. and [5]. Liu, et al.
improved the performance using an adaptive structure ten-

sor and an affine parametric model. However, considering

the computational complexity for embedded real-time sys-

tem design, a gradient-based OFE using a LS technique can

be a better choice because of low-complexity with compara-

ble performance. Rav-Acha and Peleg proposed the efficient

way to implement Lukas-Kanade algorithm, which is an it-

erative form of LS-type algorithm by using warping. There-

fore, it is hard to expect to improve the computational com-

plexity of non-iterative LS-type algorithms. Fleet and Lan-

gley employed recursive temporal filtering using infinite im-

pulse reaponse (IIR) filtering for a LS technique of local first-

order constraints to reduce the number of temporal frames

and filtering operations [5]. Even though Fleet and Langley

achieved an efficient algorithm using temporal recursive fil-

tering with comparable performance [1], a potential problem

is caused from IIR filtering. IIR approach is more sensitive to

finite precision arithmetic, as is commonly required for effi-

cient implementations.

In this paper, we show how to design a spatially recur-

sive optical flow estimation (OFE) framework using adaptive

filtering and sliding window RLS techniques and simulation

results for constant and affine motion models.

The rest of the paper is organized as follows. The intro-

duction of a gradient based OFE using local optimization is

described in section 2. The proposed sliding window RLS-

based OFE framework using adaptive filtering is explained in

section 3. In section 4, the performance and computational

complexity are compared. The conclusions are presented at

the last section.

2. GRADIENT-BASED OFE
USING LOCAL OPTIMIZATION

Gradient-based optical flow estimation is based on the con-

straint equation (Eq. (1)) using first derivatives with respect

to spatial and temporal domains [1].

�Is · �v + It = 0, (1)

where �Is = (Ix, Iy) and Ix, Iy , and It are spatial and tempo-

ral derivatives of an image I respectively, and �v = (vx, vy)T

is a motion vector for a dense motion field. Equation (1) is

derived from the Taylor series expansion of the translational

brightness consistency between successive image sequences.

The brightness consistency can be described in Eq. (2).

I(x, y, t) = I(x + vx, y + vy, t + 1), (2)

where I(x, y, t) is the intensity of the image at a point (x, y)
at a time t.

7891-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Since Eq. (1) has two unknowns in one linear constraint

equation, it is an under-determined system. To find a unique

solution for the motion vector, more constraint terms must

be incorporated. Local or global optimization techniques are

often used to calculate motion vectors for additional local or

global smoothness constraints. This transforms the problem

into an estimation problem based on the derivative values of

image, such as regularization or least squares.

One of the most popular gradient-based OFE algorithms

using local optimization is an OFE algorithm using a local

least-squares (LS) technique for solving a system of con-

straint equations [1]. This algorithm, LS-OFE, assumes con-

stant motion consistency within a local window area. Mathe-

matically this can be described as follows:

arg
�v

min
∑

�x∈Ω

W (�x, t)[�Is · �v + It(�x, t)]2, (3)

where W (�x, t) is a weighting window, Ω is a region of interest

for current position, and �x = (x, y).
The solution for Eq. (3) can be described as follows:

�v = [AT WA]−1AT W�b, (4)

where

A = [�Is(�x1, t), · · · , �Is(�xn, t)]T , (5)

W = diag[W (�x1, t), · · · , W (�xn, t)], (6)

�b = −[It(�x1, t), · · · , It(�xn, t)]T . (7)

When [AT WA]−1 exists, we can solve for �v using Eq. (4).

AT WA =
[∑

WI2
x

∑
WIxIy∑

WIxIy

∑
WI2

y

]
(8)

AT W�b =
[−∑

WIxIt

−∑
WIyIt

]
(9)

Equation (4) is a LS solution for calculating an optical flow.

This gradient-based OFE using local optimization can be

generalized using a LS concept to incorporate parametric mo-

tion models since it employs a block-wise constant motion

model. Based on the parametric motion-model, some parts of

equations of LS-OFE can be changed as follows:

�Is(�x, t) = D, �v = M · �p, (10)

where

D = [Ix, Iy], M =
[

1 0
0 1

]
, �p = [p1, p2]T . (11)

By changing M and �p depending on the parametric motion

model, we can implement LS-OFE algorithms with different

motion models (See Table 2). Equations (10) and (11) are for

the LS-OFE algorithm with the constant model model. We

use the notation of Eq. (10) for other parametric cases.

3. THE PROPOSED FRAMEWORK USING
ADAPTIVE FILTERING AND RLS

Even though the gradient-based optical flow estimation (OFE)

algorithm using a least-squares (LS) technique is one of most

successful solutions in terms of performance and computa-

tional complexity, it has some redundancies for calculating

successive LS among adjacent pixels. Therefore, recursive

least-squares (RLS) and adaptive filtering techniques can be

applied for improving the computational efficiency.

We can model LS-OFE algorithm as an adaptive filter-

ing problem using a sliding window RLS technique. First we

model the least-squares error function.

ε =
∑

�x∈Ω

|e(�x, t)|2, (12)

where Ω is a region of interest and

e(�x, t) = d(�x, t) − y(�x, t) = d(�x, t) − �fT · �w. (13)

In Eq. (13), d(�x, t) is the desired signal, �f is the input signal

for the FIR adaptive filter, and �w is the filtering coefficient

of the FIR adaptive filter. This set-up can transform the LS

problem into adaptive filtering framework.

Based on Eq. (3), (10), and (13), we can model ε as fol-

lows:

ε =
∑

�x∈Ω

W (�x, t)[�Is · �v + It(�x, t)]2 =
∑

�x∈Ω

|e(�x, t)|2

=
∑

�x∈Ω

|d(�x, t) − �fT · �w|2, (14)

where d(�x, t) = −It(�x, t), �fT (i) = �Is, and �w = �p. We use

W = I to match the adaptive filtering framework with a LS

solution in Eq. (14). The gradient-based optical flow esti-

Kth LS N+1th

term

1st

term

(K+1)th LS

+ Step

- Step

Fig. 1. Two-step sliding window algorithm description.

mation (OFE) algorithm using a least-squares (LS) technique

can be mapped into a sliding window RLS algorithm with

Eq (14). We simplify the notation of a spatial and temporal

axis format into an 1-D spatial axis form for illustration in

Fig. 1 and Eq (15). Sliding window RLS is composed of two

steps. The first step is a growing window RLS. This can be

called the ‘+’ step in Fig. 1 because this stage adds a new data

point for least-squares (LS). To perform LS for the same num-

ber of data points, we need to remove the effect of the oldest

790

data point. We can call this step the ‘-’ step in Fig. 1 because

this step reduces the window. Mathematically the sliding win-

dow algorithm can be regarded as two-step LS based on the

previous local-window LS result. If we assume that the LS of

previous pixel position is already calculated, the new LS can

be calculated as follows (See Figure 1):

min
�w(K)

N∑

1

|e(i)|2
′+′step−−−−−→ min

�w+(K+1)

N+1∑

1

|e(i)|2

−−−−−→
′−′step

min
�w(K+1)

N+1∑

2

|e(i)|2, (15)

1. Signal modeling:

d(i) = −It(�x, t), �fT (i) = �Is, and �w = �p

e(i) = d(i) − y(i) = d(i) − �fT (i) · �w

Rf (n) =
∑ �f(i) · �fT (i),

�rdf (n) =
∑

d(i)�f(i), P(n) = R−1
f (n)

2. Algorithm

For n = 0...N
Do growing window RLS

a) �z(n) = P(n − 1)�f(n)

b) �g(n) = 1

1+�fT (n)·�z(n)
�z(n)

c) α(n) = d(n) − �wT (n − 1) · �f(n)

d) �w+(n) = �w(n − 1) + α(n)�g(n)

e) P+(n) = P(n − 1) − �g(n) · �zT (n)

Do reducing window RLS

f) �z+(n) = P+(n)�f(n − L − 1)

g) �g+(n) = 1

1−�fT (n−L−1)·�z+(n)
�z+(n)

h) α+(n) = d(n−L−1)− �fT (n−L−1)· �w+(n)

i) �w(n) = �w+(n) − α+(n)�g+(n)

j) P(n) = P+(n) + �g+(n) · �z+T (n)

Table 1. A spatially recursive optical flow estimation framework using

adaptive filtering and sliding window RLS techniques. We simplify the no-

tation of the spatial and temporal axis format into a 1-D spatial axis form for

illustration

where the ‘+’ step is a growing window RLS step and the

‘-’ step is a reducing window RLS step. The sliding window

algorithm can turn O(n3) of LS into O(n2), where n is the

1-D size of a square matrix.

By using the sliding window RLS algorithm and the rela-

tionships in Eq (14), we can make a spatially recursive optical

flow estimation framework. The algorithm is described in Ta-

ble 1.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS
We performed simulations of our spatially recursive optical

flow estimation (SR-OFE) algorithms and the gradient-based

optical flow estimation algorithm using a least-squares (LS)

technique for constant and affine motion models. Test images

are translational and diverging tree images with size 150×150
in Fig. 2. A gaussian distribution function with σ = 1.5
is used for the 3-D smoothing kernel. For a derivative fil-

ter, we use 1
12 (−1, 8, 0,−8, 1). The performance of the al-

gorithm is tested based on the angular error between correct

and estimated motion. We perform simulations to compare

performance to the original gradient-based optical flow esti-

mation algorithm using a least-squares (LS) technique - the

simplified Lukas-Kanade OFE algorithm in [1]. Optical flow

field results are presented in Table 3. For the constant mo-

tion model, the performance results of the SR-OFE algorithm

are almost same as those of the LS-OFE algorithm for same

window sizes. The difference is caused by weighting matrix.

However, there is computational complexity reduction about

60% by changing the LS-OFE algorithm to the SR-OFE al-

gorithm since we can reuse the data for LS matrix. For the

1. Constant motion modeling:

d(i) = −It(�x, t), �fT (i) = DM , and �w = �p
�Is(�x, t) = D,

D = [Ix, Iy], M =
[

1 0
0 1

]
, �p = [p1, p2]T

2. Affine motion modeling:

d(i) = −It(�x, t), �fT (i) = DM , and �w = �p
�Is(�x, t) = D,

D = [Ix, Iy], M =
[

x y 1 0 0 0
0 0 0 x y 1

]
,

�p = [p1, p2, p3, p4, p5, p6]T

Table 2. The parametric motion modelings of the constant and affine mod-

els for SR-OFE algorithms.

affine motion model, the performance results of the SR-OFE

with affine motion model and LS-OFE algorithms are pre-

sented in Table 3. The affine motion model [6] for SR-OFE is

described in Table 2. The execution speed comparison of con-

ventional LS-OFE and spatially recursive LS-OFE (SR-OFE)

algorithms is plotted in Fig. 3. The affine parametric motion

model is employed for SR-OFE algorithm.

In order to compare the number of operations of LS-OFE

and SR-OFE algorithms, first we make least squares prob-

lems into normal equations (NE). In SR-OFE algorithm, RLS

with adaptive filtering are applied for the NE. Cholesky fac-

torization is used to solve the NE for LS-OFE algorithm cases

if the matrix is positive definite.To save computations, some

additional memory is used for the SR-OFE algorithms. By

setting N = 6 for the affine motion model in Table 1, SR-

OFE algorithm can execute about 4 times faster than LS-OFE

algorithm (See Figure 3). The computational complexity of

SR-OFE algorithm is O(kn2), where n is the number of mo-

tion modeling parameters and k is the number of updating

point(s) or line(s) per LS. Therefore, SR-OFE algorithm can

be highly efficient if the number of parameters (n) in motion

modeling increase and k is small compared to the number of

791

65 70 75 80 85 90

65

70

75

80

85

90

65 70 75 80 85 90

65

70

75

80

85

90

(a) Basic sample image (b) Part of motion field for translating tree images (c) Part of motion field for diverging tree images

Fig. 2. The basic sample image and motion fields of translating and diverging image sequences.

motion modeling parameters. This is the reason why SR-OFE

algorithm with affine motion modeling has higher reduction

than constant motion modeling.

The performance of SR-OFE algorithm from 1 to 3 points

or lines update per LS operation are presented in Table 3.

To compare the efficiency of the parametric motion models,

SR-OFE algorithm with affine motion model, ASR-OFE al-

gorithm, is tested. Same derivative and smoothing kernels are

employed for our simulations in Table 3 as described in [1]

except threshold value. The reason why we change threshold

value is that the value is dependent on the number of motion

modeling. Based on Table 3, we can notice that ASR-OFE

has better performance for a smoothly spatial-varying motion

field in diverging tree images than a constant motion field in

translational tree images since a smoothly spatial-varying mo-

tion field can be well represented in affine form. As the num-

ber of updated pixels are increasing, the performance slightly

decreases. This is caused by using same threshold number.

If we change threshold numbers depending on the number

of updated pixels, the result can be improved for the higher

number of updated pixels cases. Overall the performance of

ASR-OFE is comparable with that of LS-OFE with more than

4 times faster execution speed.

1 1.5 2 2.5 3
3.95

4

4.05

4.1

4.15

4.2

The number of updated pixels/lines

E
xe

cu
tio

n
ra

tio
 b

et
w

ee
n

LS
−O

FE
 a

nd
 A

S
R
−O

FE

Fig. 3. The execution speed ratio between LS-OFE and ASR-OFE al-

gorithms. The parametric motion model is affine model. LS-OFE is least-

squares OFE and ASR-OFE is spatially recursive OFE with affine model.

The proposed affine SR-OFE (ASR-OFE) algorithm shows computational

efficiency compared with affine LS-OFE algorithm.

5. CONCLUSIONS
In this paper, we propose a spatially recursive optical flow es-

timation (OFE) framework using adaptive filtering. The slid-

ing window RLS and adaptive filtering are employed to re-

Translating Tree Diverging Tree

Algorithm Avg Error Std Avg Error Std

LS-OFE 0.66◦ 0.67◦ 1.94◦ 2.06◦

SR-OFE-1pt 0.76◦ 0.63◦ 1.64◦ 1.42◦

SR-OFE-2pt 0.80◦ 0.75◦ 1.83◦ 1.87◦

SR-OFE-3pt 0.87◦ 0.90◦ 1.90◦ 2.01◦

Table 3. Angular error performance of spatially recursive OFE algorithm

with affine motion model and LS-OFE algorithm in [1]. The threshold for

LS-OFE algorithm is 1. Avg and Std means average and standard deviation

of angle error, respectively. And pt means the number of updating point(s) or

line(s).

duce the redundancies for calculating successive LS among

adjacent pixels. Even though we describe about constant

and affine motion models, this framework can be applied to

other parametric motion models. Under authors knowledge,

there are parametric motion models up to 12 parameters [6].

In addition, some algorithms such as ego-motion estimation,

multi-frame OFE, and 3-D OFE, need more number of motion

parameters for estimating than general 2-D OFE. Based on

these results, we can conclude that our algorithm framework

can improve the saving of computational complexity more as

the number of motion modeling parameter increases because

standard LS needs O(n3) and RLS requires O(kn2) computa-

tions, where n is the number of motion modeling parameters

and k is the number of updating point(s) or line(s) per LS.

6. REFERENCES

[1] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical

flow techniques,” International Journal of Computer Vision, vol. 12, no.

1, pp. 43–77, Feb. 1994.

[2] H. Liu, T.-H. Hong, M. Herman, T. Camus, and R. Chellappa, “Accuracy

vs efficiency trade-offs in optical flow algorithms,” Comp. Vision Image
Understanding, vol. 72, pp. 271–286, 1998.

[3] H. Liu, R. Chellappa, and A. Rosenfeld, “Accurate dense optical flow es-

timation using adaptive structure tensors and a parametric model,” IEEE
Trans. Image Processing, vol. 12, no. 10, pp. 1170–1180, Oct. 2003.

[4] A. Rav-Acha and S. Peleg, “Lukas-kanade without iterative warping,” in

IEEE International Conference on Image Processing, Atlanta, Oct 2006.

[5] D. J. Fleet and K. Langley, “Recursive filters for optical flow,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 61–67,

Jan. 1995.

[6] J. L. Barron and M. Khurana, “Determining optical flow for large mo-

tions using parametric models in a hierarchical framework,” in Vision
Interface (VI1997), Kelowna, B.C., May 1997.

792

