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ABSTRACT 

Estimation of optical flow is an important topic to provide 
motion information for motion analysis. This paper 
addresses an effective confidence based optical flow 
algorithm. It considers the bidirectional symmetry of 
forward and backward flow to compute the confidence 
measure for each flow estimate. According to the 
confidence, the reliable flow estimates have greater 
contribution to local averages while unreliable estimates are 
suppressed. The errors cannot be propagated. Since the 
image-driven and flow-driven discontinuity preserving 
methods have complementary advantages and limitations, 
we propose a region based method combining these two 
types of methods to preserve motion boundaries. 
Experiments on typical sequences have successfully 
demonstrated the validity of the proposed algorithm. 

Index Terms— Confidence, optical flow, smoothness, 
reliability

1. INTRODUCTION 

Motion analysis is an important research topic for many 
digital video applications. Estimation of optical flow (2-D 
velocity field) has been widely used to provide motion 
information for motion analysis. Various algorithms have 
been proposed to compute optical flow [1]-[5]. These 
algorithms can be classified into the global methods which 
can yield dense optical flow fields due to the filling-in effect 
[5] and the local methods which usually yield sparse flow 
fields. Among the global methods, the pioneering work by 
H&S [1] is probably the most popular algorithm because of 
its simplicity and reasonable performance. However, it has 
the limitation of noise sensitivity. A significant 
improvement has been achieved in estimation of optical 
flow by some modification versions of the H&S algorithm. 
For example, Bruhn et al. [5] proposed a Combined Local-
Global strategy (CLG) that combines the density of H&S 
method with the robustness of L&K [2]. In general, 
estimated optical flow is forward flow which moves a point 
from a location in frame t to some location in frame t+1. On 
the other hand, backward optical flow which moves a point 
from a location in frame t+1 to some location in frame t is 
not considered. However, it has been neglected that 

backward and forward flow can assist each other to improve 
accuracy of motion estimation.  
This paper proposes a novel bidirectional strategy combing 
forward and backward optical flow to estimate optical flow 
accurately. It extends H&S algorithm. We have known the 
global methods have the advantage of the filling-in effect, 
i.e., at a location where the image gradient is zero, the flow 
estimate is usually the average of the flow estimates in the 
neighborhood of this location. In the conventional 
algorithms, flow estimate at each location is usually 
expected to have the same reliability and the same weight. 
Thus, the effect of the averaging is isotropic. It is clear that 
whether dense or sparse flow cannot have the same 
reliability for all pixels. Under this situation, estimate errors 
of flow estimates at neighboring locations can be 
propagated into local averages. It causes the unreliability of 
estimated optical flow. It is natural that optical flow 
estimates with higher reliability should have greater 
contributions than those with lower reliability to the 
averages. This requires greater weights should be assigned 
to flow estimates with high reliability while smaller weights 
to flow estimates with low reliability, which need to be 
suppressed in order to prevent the estimate errors from 
propagating. Thus, the effect of averaging is anisotropic. 
We introduce the confidence measure as this type of the 
adaptive weights. This paper combines forward and 
backward optical flow to compute the confidence measure 
at each location. 
Local velocity averages indicate the influence of the 
smoothness constraints and implement the filling-in effect. 
However, the averages make true motion boundaries blurred. 
To cope with this problem, the image-driven and flow-
driven methods have been proposed. The image-driven 
methods suppress smoothing at image boundaries. It may 
preserve some image boundaries as false flow boundaries 
where the smoothness effect is reduced. On the other hand, 
the flow-driven methods can preserve true flow boundaries. 
However, it is difficult to estimate precise motion 
boundaries. We have seen that both image-driven and flow-
driven methods have complementary advantages and 
limitations. So this paper proposes a region-based 
discontinuity preserving method combining both image-
driven and flow-driven methods. 

2. PROPOSED OPTICAL FLOW ALGORITHM 
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H&S algorithm is based on the brightness constancy model 
(BCM), i.e., the brightness of each point is constant along 
its motion trajectory in an image sequence. Let ( , , )I x y t

denote the brightness of a point ( , )x y  in the image at time t .
The forward BCM (FBCM) and backward BCM (BBCM) at 
time t are respectively given as 

f f( , , ) ( , , 1)I x y t I x u y v t                     (1) 
and 

b b( , , 1) ( , , )I x y t I x u y v t                     (2) 
where u  and v  are the horizontal and vertical components 
of optical flow respectively, and the subscripts f  and b
denote the forward and backward optical flow respectively. 
We expand f f( , , 1)I x u y v t  and b b( , , )I x u y v t  around the 
points ( , , )x y t  and ( , , 1)x y t  by Taylor series expansion, 
respectively. FBCM and BBCM lead to the optical flow 
constraints (OFCs) (3) and (4) by eliminating the second 
and higher order terms in the above expansions, respectively. 

0 0 0,f
f f f 0x y tu I v I I                          (3) 

and 
1 1 1,b

b b b 0x y tu I v I I                          (4) 
where w

xI , w
yI , and w

tI  are the partial derivatives of wI  with 
respect to x , y , and t  at time w  ( 0,1w ), respectively, and 
the superscripts 0  and 1  denote time t  and ( 1)t ,
respectively. These two OFCs are the ill-posed equations. 
Then, assuming the smooth flow field, the forward optical 
flow or backward optical flow v is computed by 
minimizing the corresponding total energy  

2 2 2 2 2 2 2

,

( ) ( ) ( ) ( )
x y

du du dv dvE dxdy
dx dy dx dy

    (5) 

where the coefficient  is the smoothness weight, and the 
subscript ( f ,b ) represents the forward or backward 
optical flow. Then, we adopt the same method as H&S 
algorithm to solve the optical flow f f( , )u v  and b b( , )u v . Thus, 
the optical flow v can be obtained iteratively. At (n+1)th 
iteration, 
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where u  and v  are the averages of the horizontal and 
vertical estimates in the neighborhood of each position, 
respectively, and 0w  if f ; otherwise 1. In (6), 1  if 

f ; otherwise -1. From (6), the forward and backward 
optical flow take advantage of the partial derivatives of the 
images at times t  and 1t , respectively. The local averages 
indicate the influence of the smoothness constraints. It leads 
to the filling-in effect. Without preserving motion 
discontinuity, the local average 0 0 0( ) ( ), ( )n n nu vv s s s  at one 
location 0 ( , )x ys is defined as 

0 0

0
( ) ( )

( ) ( ) ( ) / ( )
i i

n n n n
i i i

N N

R R
s s s s

v s s v s s                (7) 

where 0( )N s denotes the pre-defined neighborhood of the 
location 0s , and ( )n

iR s  is the confidence measure which 
indicates the reliability of estimated optical flow nv at this 
neighbor is . Fig.1 (a) shows the corresponding mean 
template. The conventional algorithms only estimate 
forward optical flow. Furthermore, the confidence measure 
for each estimate is replaced by the constant weight. Horn 
and Schinck use the suitable weight 2

is  for non-diagonal 
neighbors and 1

is
 for diagonal neighbors. It is clear that 

this type of the mean template cannot identify unreliable 
velocity estimates. The smoothness (average) can reduce the 
influence of unreliable estimates while the estimation errors 
of unreliable estimates are also propagated.  

                       (a)                                                     (b)   

Fig. 1  (a) Proposed mean template. (b) Illustration of the deviation of 
forward and corresponding backward flow. 

We assign an adaptive confidence weight to each estimate. 
The confidence ( , )nR ts  of a flow estimate ( , )n tv s at location s
at iteration n is defined as 

( , ) ( ( , ), 1)
( , ) exp

( , ) ( ( , ), 1) / 2

n n n
n

n n n

t t t
R t

t t t

v s v s + v s
s

v s v s + v s
       (8) 

where  prevents the denominator from equaling zero, and 
b if f ; otherwise f . Under the ideal situation, 

( , ) ( ( , ), 1)t t tv s v s + v s . We call this relationship as the 
bidirectional symmetry, e.g., the forward flow moves a 
point p from location s  to 's  while the corresponding 
backward flow moves this point p from location 's  to s .
When the estimation error occurs, the deviation 

( , ) ( , ) ( ( , ), 1) 0n n n nt t t td s v s v s + v s . As an example, Fig.1 
(b) illustrates this deviation. The reliability measure ( , )nR ts

increases monotonically as ( , )n td s  decreases. The greater 
the measure ( , )nR ts , the more reliable the flow estimate at 
this location s .
From (7), local averages are mainly derived from more 
reliable estimates. The more reliable the estimates are, the 
greater contributions they have to the averages. Those 
estimates with lower reliability are suppressed so that their 
estimation errors cannot be propagated. It makes the filling-
in effect more reliable and more accurate by rejecting 
unreliable estimates. Furthermore, our mean template can 
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utilize all estimates in this template if the pre-defined 
neighborhood includes the central location in (7) since it 
considers their reliability, as shown in Fig.1 (a). 

3. PROPOSED DISCONTINUITY-PRESERVING 
METHOD 

In general, motion boundaries lie on some boundaries of 
spatial regions which have the coherence in motion. At 
motion boundaries, the smoothness is no longer valid. To 
handle motion boundaries, our discontinuity-preserving 
method (DP) be performed by changing the way that local 
averages are calculated in the neighborhood since the 
smoothness embodies on local averages.  
The watershed algorithm [7] is used to divide each frame 
into non-overlapping homogeneous regions with closed and 
precise boundaries. The template ( )x  is centered at the 
point ( , )x yx , as shown in Fig.2. The points in each 
segmented spatial region are firstly merged and labeled with 
the same symbol, and the points in variant connected 
regions are labeled by different symbols. Assume that there 
are D different labels within the region ( )x . Let iJ  be the 
ith spatial region within ( )x , and iL  denote the 
corresponding label. Without loss of generality, assume 

0J is the spatial region the point x  belongs to. ( )iA L  is the 
number of the estimates within the region iJ . The local 
average ( )v x is computed by processing all regions within 

( )x  as follow: 

0 0
( ) ( ) ( ) ( ) / ( ) ( )

i i

D D

i J i J

R g i R g i
x x

v x v x x x       (9) 

where ( )g i  is the controlling function to determine whether 
the region iJ  has contribution to the local average, which is 
defined by  

1 if ( ) ( ) ( ) / ( ) ( )
( )

0 otherwise
i i

r
J J

C i x R x R x T C i
g i x x

v    (10) 

where rT  is the threshold constant and ( )C i  is defined as  
1 1

0 0
( ) ( ) ( ) ( ) / ( ) ( )

k k

i i

k J k J

C i R g k R g k
x x

v x x x .     (11) 

We initialize the (0)C  to the average of the flow estimates 
within the region 0J .  After processing all the regions, if a 
much smaller number of the estimates are used to compute 
the local average, it is easily influenced by outliers. To 
further improve the effect of smoothness, we add the 
unprocessed estimates in the 8-neighborhood of the point x
in computation of the local average ( )v x .
Fig.2 illustrates the proposed method. In this case, there are 
four spatial regions (different colors) with the different 
labels. The velocity estimates within the region with the 
label 0L  are close to those within the region with the label 

1L . They have the same motion coherence and belong to the 
same motion region. The regions with 2L  and 3L  have 
similar velocity estimates which are different from those 
within the regions with 0L  and 1L . Thus, the estimates 
within the regions with 0L  and 1L  are merged together to 
compute the local average.  It stops the smoothness from 
propagating across the true motion boundary (red boundary) 
and performs the smoothness across the false motion 
boundary (blue boundary).  

Fig. 2  Illustration of the proposed discontinuity-preserving method. 

.
4. EXPERIMENTAL RESULTS 

We evaluate our algorithm on three synthetic sequences 
with different motion types [4], where the ground truth data 
is available. The number of iteration is 200 for all the 
algorithms. 
Fig.3 shows our first experiment on the Office sequence 
where divergent motion is dominating. The flow field (Fig.3 
(b)) with the H&S algorithm is disorderly in some regions 
since estimation errors can be propagated. The flow field 
(Fig.3 (c)) with our algorithm without DP coincides well 
with the ground truth field (Fig.3 (a)). Table 1 shows the 
quantitative evaluation of these algorithms. As can be seen, 
the proposed algorithm outperforms the same type of the 
other algorithms with respect to the average angular error 
(AAE) [8] under the full density (100%). It achieves the 
best AAE of 7.5°. In addition, we compare our algorithm 
with the typical LK algorithm [2]. LK algorithm leads to a 
parse flow field (73%) due to no filling-in effect. Table 1 
further confirms the observation in Fig.3 that the result of 
our algorithm coincides very well with the ground truth.  

(a)                                   (b)                                      (c) 

Fig.3 (a) Ground truth field (sampled and amplified by 4 times ) for frame 5 
of the Office sequence. (b) Estimated optical flow using the H&S algorithm 

( 20 ). (c) Ditto for the proposed algorithm ( 20 ).
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Table 1: Quantitative comparison for frame 5 of the Office sequence 
Technique AAE (°) Density (%)
H&S [1] 12.3 100 

I&L (No OR) [6] 14.3 100 
LK [2] 10.1 73 

2D-CLG-linear [5]   8.7 100 
Proposed (No DP)   7.5 100 

Table 2 gives the objective comparison of the performances 
of several algorithms on the street sequence. In this case, 
though AAE of B&W algorithm [5] is smaller than that of 
the proposed algorithm with DP, we observe the optical 
flow with the proposed algorithm (Fig.4 (a)) on the 
interesting detail (the car) looks better than that with B&W 
algorithm (Fig.4 (b)). 
The third experiment on the rotating sphere sequence 
demonstrates the effectiveness of the DP method. As can be 
seen in Fig.5 (a), the flow estimates on the rotating sphere 
are propagated into the non-moving background regions and 
the smoothness constraint blurs the motion boundary. The 
proposed DP method can reduce this propagation, as shown 
in Fig.5 (b), though some parts of the motion boundary 
deviate from the corresponding parts of the real boundary. 
The deviation is mainly caused by the camouflage problem, 
i.e., the intensities of some parts of the moving object are 
much similar to those of the background. This segmentation 
error leads to the blurred motion boundary parts. It can be 
reduced by further improving spatial segmentation accuracy. 
The quantitative evaluation is given in Table 2. From Table 
2, the DP method can further decrease AAE. The best result 
is achieved by the proposed algorithm with DP (5.1°) under 
the full density (100%). 

5. CONCLUSION 

This paper addresses an effective optical flow algorithm 
based on the confidence which takes advantage of the 
bidirectional symmetry of optical flow. The proposed 
algorithm improves the reliability and accuracy of optical 
flow by suppressing unreliable flow estimates. It leads to 
the reliable filling-in effect. The proposed discontinuity 
preserving method can effectively stop the smoothness from 
propagating across motion boundaries. The experiments 
show the results of the proposed algorithm coincide very 
well with the ground truth. Compared with several reference 
algorithms, the proposed algorithm successfully achieves 
the excellent results with the full density. 
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