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ABSTRACT

The purpose of this paper is to introduce a very efficient algorithm
for signal extrapolation. It can widely be used in many applications
in image and video communication, e. g. for concealment of block
errors caused by transmission errors or for prediction in video cod-
ing. The signal extrapolation is performed by extending a signal
from a limited number of known samples into areas beyond these
samples. Therefore a finite set of orthogonal basis functions is used
and the known part of the signal is projected onto them. Since the
basis functions are not orthogonal regarding the area of the known
samples, the projection does not lead to the real portion a basis func-
tion has of the signal. The proposed algorithm efficiently copes with
this non-orthogonality resulting in very good objective and visual
extrapolation results for edges, smooth areas, as well as structured
areas. Compared to an existent implementation, this algorithm has a
significantly lower computational complexity without any degrada-
tion in quality. The processing time can be reduced by a factor larger
than 100.

Index Terms— Signal extrapolation, Error concealment, Predic-
tion, Image processing

1. INTRODUCTION

The estimation of data samples from known surrounding samples
is an important task in many modern communication applications.
Extending a discrete signal from known areas into areas where no
amplitude information is accessible is usually called signal extra-
polation. In image and video communication a common application
for signal extrapolation is concealment of block losses by estimating
lost areas from correctly received adjacent areas. Signal extrapola-
tion could as well be used for signal prediction whereas data samples
are estimated based on already known samples. So only the predic-
tion error between the original samples and the estimated samples
has to be transmitted.

In [1] we presented the orthogonality deficiency compensated fre-
quency selective extrapolation (OFSE), an efficient algorithm for
signal extrapolation based on the frequency selective extrapolation
(FSE) proposed in [2]. We showed that this algorithm provides very
good extrapolation results for concealment of block errors. The ex-
trapolation results were compared to the ones from existing conceal-
ment algorithms such as the maximally smooth image recovery al-
gorithm by Wang et al. [3], the projections onto convex sets (POCS)
algorithm proposed by Sun and Kwok [4], the DCT-based interpo-
lation algorithm by Alkachouh and Bellanger [5] and the sequential
error-concealment algorithm by Li and Orchard [6]. Even if we had
been able to gain a large increase in PSNR and to reduce visual
artifacts, the algorithm suffers from its high computational complex-
ity and processing time. In this paper, we will present the fast or-
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Fig. 1. Data area L used for two-dimensional extrapolation consist-
ing of the missing area to be estimated B and the known surrounding
support area A.

thogonality deficiency compensated frequency selective extrapola-
tion (FOFSE), a modification of the algorithm from [1] that needs
far less operations whereas the extrapolation quality is still on the
same high level.

In the following, we start with a short review of the OFSE al-
gorithm [1] in order to identify two computational very expensive
steps. Subsequently, we propose a method to reduce the opera-
tions in these parts and compare the extrapolation results in terms of
PSNR and processing time with the original OFSE algorithm and
the algorithms mentioned above. The algorithm is carried out only
for two-dimensional data sets, but by making use of [7] it could be
adapted to three-dimensional sets as well.

2. SIGNAL EXTRAPOLATION

Fig. 1 shows a possible two-dimensional data set, depicted by the
two spatial coordinates m and n. In area B, called missing area,
the data samples of unknown magnitude are subsumed. The idea
of signal extrapolation is to estimate these samples by means of the
data samples with known magnitude. These samples are subsumed
in area A, called the support area. Both areas A and B together form
area L containing all data samples being involved in the extrapola-
tion process.

We regard the discrete function f [m, n] that is defined over the
whole area L. The magnitudes from function f [m, n] are only ac-
cessible over the support area A and we aim to get the magnitudes
over area B by generating a parametric model g [m, n] that is also
defined over L. The parametric model is generated by a weighted
linear combination of mutually orthogonal two-dimensional basis
functions ϕk [m, n].

g [m, n] =
∑
∀k∈K

ckϕk [m, n] (1)

Thereby the set K covers the indices of all used basis functions and
the weighting factors ck are denoted as expansion coefficients. The
algorithm aims to generate g [m, n] in a way that it becomes a good
approximation of f [m, n] in A. As g [m, n] is defined over whole
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L we get a signal continuation into area B. The parametric model is
generated in an iterative approach whereas in every iteration step one
basis function with its corresponding expansion coefficient is added

g
(ν) [m, n] = g

(ν−1) [m, n] + ĉ
(ν)
u · ϕu [m, n] . (2)

u is the index of the basis function that was chosen for this iteration
step and ĉ

(ν)
u is the estimate for the expansion coefficient. g(ν) [m, n]

denotes the parametric model in the ν-th iteration step. Initially, the
model g(0) [m, n] is set to zero

The arising residual approximation error r(ν) [m, n] in the ν-th
iteration step between f [m, n] and g(ν) [m, n] is

r
(ν) [m, n] =

{
r(ν−1) [m, n] − ĉ

(ν)
u · ϕu [m, n] ,∀ (m, n) ∈ A

0 ,∀ (m, n) ∈ B

(3)

In every iteration step a weighted projection of r(ν) [m, n] onto
each basis function is performed. Thereby the weighting function

w [m, n] =

{
ρ [m, n] , ∀ (m, n) ∈ A
0 , ∀ (m, n) ∈ B

(4)

is used to control the influence a sample has on the extrapolation
process depending on its location. On the one hand w [m, n] is used
to mask area B, on the other hand it performs the actual weighting by
ρ [m, n] which can be chosen arbitrarily. A good choice for ρ [m, n]
is given in (15). The weighted projection onto the k-th basis function
yields the projection coefficient p

(ν)
k .

p
(ν)
k =

∑
(m,n)∈L

r
(ν−1) [m, n] · ϕk [m, n] · w [m, n]

∑
(m,n)∈L

w [m, n] · ϕ2
k [m, n]

. (5)

Hereby the numerator is the weighted scalar product between the ap-
proximation error and the k-th basis function. The numerator further
is normalized by the weighted scalar product between the selected
basis function and itself.

According to [2] and [1] the basis function to be added to the
parametric model in an iteration step is the one that minimizes the
distance between the error signal and the weighted projection onto
the basis function. This results in index u of the basis function de-
termined by

u = argmax
k=0,... ,|L|−1

⎛
⎝p

(ν)2

k ·
∑

(m,n)∈L

w [m, n] · ϕ2
k [m, n]

⎞
⎠ . (6)

Obviously, this criterion for chosing the basis function is computa-
tionally very expensive as all projection coefficients have to be com-
puted and have to be compared. Hence, for the FOFSE we propose
to use the basis function that forms the biggest absolut portion of the
weighted residual error

r
(ν)
w [m, n] = r

(ν) [m, n] · w [m, n] . (7)

Therefore we regard the operator T that performs a decomposition
of a two-dimensional spatial signal into the used set of basis func-
tions. The operator returns a vector of scalars that quantifies the
portion each basis function has of the signal.

R
(ν)
w = T

{
r
(ν)
w [m, n]

}
(8)

The index u of the basis function to use is then determined by

u = argmax
k=0,... ,|L|−1

∣∣∣R(ν)
w [k]

∣∣∣ (9)

Depending on the used set of basis functions, efficient algorithms
for decomposing a signal into the basis functions exist and thus
r
(ν)
w [m, n] only has to be transformed into the domain of the ba-

sis functions and a maximum has to be found. With several sets of
bases, such as the functions of the two-dimensional DFT (compare
[2]) or the two-dimensional DCT, a complete formulation of the al-
gorithm in the transform domain is possible as well, and r

(ν)
w [m, n]

does not have be transformed in every iteration step.
In the next step, the estimate ĉ

(ν)
u for the just chosen basis func-

tion has to be determined. Unfortunately, the basis functions are not
mutually orthogonal when evaluated with respect to the support area
A in combination with the weighting function. Due to this fact, the
projection onto a basis function does not only lead to the portion
this basis function has of the approximation error but in addition,
portions of other basis functions are incorporated as well. For deter-
mining ĉ

(ν)
u , the estimate of the real portion a basis function has of

the approximation error signal, this orthogonality deficiency has to
be compensated.

The orthogonality deficiency compensation proposed in [1] ob-
tains the compensation by calculating all projection coefficients p

(ν)
k ,

k = 0, . . . , |L| − 1 and determines ĉ
(ν)
u according to

ĉ
(ν)
u =

p
(ν)
u∑

l=0,... ,|L|−1

p
(ν)
l

p
(ν)
u

·
(
K̂

)
u,l

(10)

Here
(
K̂

)
u,l

denotes the l-column in the u-th line of matrix K̂ with

matrix K̂ emanating from

K̂ = (diag (diag (K)))−1 · K . (11)

The square matrix K is the matrix of the weighted scalar products
of all basis functions.

K =

⎛
⎜⎜⎜⎜⎜⎝

∑
(m,n)∈L

w̃ϕ̃0ϕ̃0 · · ·
∑

(m,n)∈L

w̃ϕ̃|L|−1ϕ̃0

...
. . .

...∑
(m,n)∈L

w̃ϕ̃0ϕ̃|L|−1 · · ·
∑

(m,n)∈L

w̃ϕ̃|L|−1ϕ̃|L|−1

⎞
⎟⎟⎟⎟⎟⎠

(12)

In this equation two abbreviations are used, w̃ = w [m, n] and ϕ̃i =
ϕi [m, n].

Although OFSE provides very good estimates for the expansion
coefficients, it is computationally very expensive. The two main rea-
sons are the fact that all possible projection coefficients have to be
calculated and the circumstance that many operations are necessary
to generate K̂ and ĉ

(ν)
u .

Examining (10) for different scenarios, we recognized that the
compensation factor

γ
(ν)
u =

1

∑
l=0,... ,|L|−1

p
(ν)
l

p
(ν)
u

·
(
K̂

)
u,l

(13)
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OFSE [1] FOFSE

MUL MN + I ·
(

49T2

2
− 16

)
MN + I ·

(
9T 2 − 12

)
MEM 2MN + I ·

(
10T 2 + 2

)
2MN + I ·

(
7T2

2
+ 10

)
ADD I ·

(
14T 2 − 16

)
I ·

(
6T 2 + 5

)
FUNC I ·

(
9T2

2
− 1

)
I ·

(
3T2

2
+ 4

)

Table 1. Number of operations for OFSE and FOFSE.

is from a very small range of values. The center of this range strongly
depends on the extrapolation scenario. If support area A is much
larger than loss area B the basis functions are still close to orthogo-
nality, resulting in compensation factors close to 1. With decreasing
size of A the values of γ

(ν)
u tend towards 0. As an example Fig. 2

shows the occuring orthogonality deficiency compensation factors
for extrapolation of 16 × 16 pixels sized blocks framed by a sup-
port area of 16 pixels width. 200 iterations are performed and 81
block losses are considered. Test images are “Baboon”, “Lena” and
“Peppers”. The basis functions used, are the ones from the two-
dimensional discrete Fourier transform and a FFT of size 64× 64 is
used. Apparently, in most cases a compensation factor about 0.2 is
calculated.

Therefore we propose to apply a constant compensation factor γ

between 0 and 1, independent from the considered basis function
and the iteration step. So the compensation in (10) can be simplified
and we obtain

ĉ
(ν)
u = γ · p(ν)

u (14)

As we will show later, the exact choice for γ is not critical and by
adjusting γ, the extrapolation can be tuned between complexity and
quality.

3. COMPLEXITY VALUATION

Subsequently a valuation of the number of operations for the fast
orthogonality deficiency compensated frequency selective extrapo-
lation (FOFSE) is compared to the number of operations for the
original orthogonality deficiency compensated extrapolation (OFSE)
[1]. As basis functions we use the functions of the two-dimensional
Fourier transform as there exists an efficient implementation in the
transform domain [2]. We regard a block of M ×N samples and we
will use an FFT of size T × T for the transform into the frequency
domain. The number of iterations is indicated by I . We assume hy-
pothetical runtime optimized realizations, meaning that everything
that can be computed in advance is computed in advance. These
hypothetical realizations are extremly memory consuming but the
overall numbers of operations are minimal.

In Table 1 the required multiplications (MUL), memory accesses
(MEM), additions (ADD), and function calls (FUNC) are listed for
both algorithms with respect to the number of iterations, the spatial
size, and the transform size. Fig. 3 is used to illustrate the neces-
sary number of operations for both approaches with respect to the
number of iterations. The extrapolation scenario is the same as de-
scribed above. In addition to the values mentioned so far, for both ap-
proaches 2T Fast Fourier Transforms of length T are needed for the
transform into the frequency domain and back. Summarized, even
for these hypothetical implementations only about one third of the
number of operations is needed for the proposed algorithm. As such
implementations are not possible on actual processors a realistic im-
plementation is used for the following runtime evaluations. Thereby
many of the pre-calculated values have to be replaced with just in
time calculated ones. As these calculations are more expensive for
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Fig. 3. Complexity comparison OFSE and FOFSE.

OFSE than for FOFSE, the fast approach will even be more than
three times faster, as indicated by the hypothetical realizations.

4. RESULTS

In the following, the extrapolation results for the fast orthogonality
deficiency compensated frequency selective extrapolation (FOFSE)
are evaluated by concealing lost blocks in images. Therefore blocks
of size 16×16 pixels are cut out of the test images “Baboon”, “Lena”
and “Peppers”. These blocks are extrapolated and compared to the
original blocks in terms of PSNR. The support area is a frame of 16
pixels width. Further, the functions of the two-dimensional discrete
Fourier transform are used as basis functions since the complete ex-
trapolation algorithm can be performed in the frequency domain [2].
In addition, these basis functions are well suited for extrapolation as
monotone areas, noisy regions and edges can be extrapolated very
well. For the transform into the frequency domain a FFT of size
64 × 64 is used. According to [2, 1], the used weighting function is
generated by a radial symmetric isotropic model

ρ [m, n] = ρ̂

√
(m− M−1

2
)2+(n− N−1

2
)2 (15)

with the correlation coefficient ρ̂ chosen to 0.8.
In Fig. 4 the extrapolation results are shown with respect to the

number of iterations for the original frequency selective extrapola-
tion (FSE), OFSE, and for FOFSE with γ = 0.2. Although the com-
putational complexity is reduced significantly, FOFSE is as effective
as OFSE and we get an increase of up to 2 dB in PSNR compared
to the uncompensated extrapolation. The extrapolation properties
are similar to the ones from OFSE, meaning that compared to the
uncompensated extrapolation the PSNR increases a bit slower but
attains a saturation level higher than the peak level of the uncompen-
sated extrapolation.

In Table 2 the proposed extrapolation algorithm is compared to
extrapolation algorithms from Li and Orchard [6], Alkachouh and
Bellanger [5], Sun and Kwok [4], Wang et al. [3] and the fre-
quency selective extrapolation with compensation [1] and without
compensation [2] in terms of extrapolation quality and processing
time. The mean processing time per block has been measured with
MATLAB (version 7.3) implementations on a Pentium D @ 3.2 Ghz
with 4 GB RAM. The results can be split in two groups. [3, 4, 5, 2]
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“Lena” “Peppers” “Baboon” Processing time per block

Maximally smooth recovery [3] 24.8 dB 24.6 dB 19.6 dB 0.0077 sec
Spatial domain interpolation [5] 22.2 dB 23.4 dB 16.8 dB 0.0036 sec
POCS [4] 22.8 dB 22.7 dB 19.0 dB 0.0056 sec
Sequential error concealment [6] 24.7 dB 26.9 dB 18.7 dB 1.78 sec
FSE (20 iterations) [2] 24.8 dB 25.2 dB 18.6 dB 0.096 sec
OFSE (200 iterations) [1] 26.7 dB 26.8 dB 19.7 dB 43.91 sec
FOFSE (200 iterations) 26.7 dB 26.9 dB 19.7 dB 0.25 sec

Table 2. Maximum achievable PSNR and processing time per block for different extrapolation algorithms.
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Fig. 4. Extrapolation quality over iterations for losses of size 16×16
pixels.

provide decent extrapolation results with a small amount of process-
ing time, whereas [6, 1] and the proposed algorithm perform better
but at the cost of a higher computational load. Comparing the last
three algorithms it becomes clear that OFSE and FOFSE perform
a bit better than [6] regarding all test images. But by utilization of
the complexity reduced compensation the real processing time can
also be reduced by a factor more than 100, reaching an acceptable
level. The discrepancy between the measured processing time and
the theoretic considerations in Section 3 is due to the fact, that the
hypothetical memory consuming implementations are not realizable.

In order to illustrate the visual extrapolation quality, Fig. 6 shows
a part of the erroneous image “Lena” concealed with FSE, OFSE,
and FOFSE. Apparently, the visual extrapolation quality of OFSE
and FOFSE is very similar and definitely better than with FSE.

As a side effect, it is possible to tune the extrapolation between
computational load and extrapolation quality by adjusting the com-
pensation factor γ. For larger values of γ the PSNR reaches the
maximum values with less iterations although the maximum is not
as high as it can be for smaller values of γ. Only for large values of γ

the degradation effect after the peak occurs as in the uncompensated
extrapolation. To illustrate this circumstance, in Fig. 5 for test image
“Lena” the PSNR is shown over iterations for different compensa-
tion factors γ. Thus, for every desired application it is possible to set
up the extrapolation in such a way to get good extrapolation results
at a fixed number of operations.

5. CONCLUSION

Our proposed algorithm is an adaption of a very powerful extra-
polation algorithm in order to cope with its high computational load.
The proposed modifications significantly decrease the needed pro-
cessing time without any degradation in extrapolation quality. This
approach leads to very good objective and subjective results with an
acceptable processing time.
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Fig. 5. Extrapolation quality over iterations for test image “Lena”
and different compensation factors γ.

Fig. 6. Visual extrapolation quality for a part of test image “Lena”
(from left to right: error pattern, FSE, OFSE, and FOFSE)
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