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ABSTRACT

We present in this paper a new way for modeling and solving
image processing problems (restoration, classi cation,. . . ),
the topological gradient method. This method is considered
in the frame of variational approaches and the minimization
of potential energy with respect to conductivity. The nu-
merical experiments show the ef ciency of the topological
gradient approach. The image is most of the time processed
at the rst iteration of the optimization process. Moreover,
the computational cost of this iteration is reduced drastically
using spectral methods.

Index Terms— Topological gradient, image edge analy-
sis, image classi cation, image restoration, image reconstruc-
tion.

1. INTRODUCTION

The goal of topological optimization and most image process-
ing problems is to create a partition of a given domain (or
set). In topological optimization, we look for the optimal de-
sign and its complementary; in image processing problems
like edge detection, classi cation, segmentation, or inpaint-
ing, the goal is to split the image in several parts. For this
reason, topological shape optimization and image process-
ing problems have common mathematical methods like level
set approaches, material properties optimization, variational
methods,. . .
In this paper, we consider the topological gradient ap-

proach that has been introduced for topological optimization
purpose [1, 2, 3, 4, 5, 6, 7]. The basic idea is to adapt the
topological gradient approach used for crack detection [4]:
an image can be viewed as a piecewise smooth function and
edges can be considered as a set of singularities. This can be
applied to diffusive grey (or color) image restoration giving
very promizing results [8]. An optimal material distribution
is obtained at the rst iteration. We also applied the topologi-
cal gradient approach to the image classi cation problem. We
show that it is possible to solve these image processing prob-

lems using topological optimization tools for the detection of
edges, and for a nearly linear complexity.

2. TOPOLOGICAL GRADIENT

In this section, let Ω be an open bounded domain of R
2 and

j(Ω) = J(uΩ) be a cost function to me minimized, where uΩ

is the solution to a given Partial Differential Equations (PDE)
problem de ned in Ω.
For a small ρ ≥ 0, let Ωρ = Ω\ωρ be the perturbed do-

main by the insertion of a small hole ωρ = x0 + ρω, where
x0 ∈ Ω and ω is a xed bounded domain of R2 containing the
origin. The topological sensitivity theory provides an asymp-
totic expansion of j when ρ tends to zero. It takes the general
form

j(Ωρ)− j(Ω) = f(ρ) G(x0) + o (f(ρ)) , (1)

where f(ρ) is an explicit positive function going to zero with
ρ and G(x0) is called the topological gradient at point x0.
Then to minimize the criterion j, we have to insert small holes
at points where G is negative. Using this gradient type infor-
mation, it is possible to build fast algorithms. In most appli-
cations, a satisfying approximation of the optimal solution is
reached at the rst iteration of the optimization process. A
topological sensitivity framework allowing to obtain such an
expansion for general cost functions has been proposed in the
work of Masmoudi [2, 4].

3. IMAGE RESTORATION

In this section, we use the topological gradient as a tool for de-
tecting edges for image restoration. LetΩ be an open bounded
domain of R

2. For v a given function in L2(Ω), the initial
problem is de ned on the safe domain and reads as follows:
nd u ∈ H1(Ω) such that

{
−div (c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(2)
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where n denotes the outward unit normal to ∂Ω and c is a
constant function.
For a given x0 ∈ Ω and a small ρ ≥ 0, let us now consider
Ωρ = Ω\σρ the perturbed domain by the insertion of a crack
σρ = x0+ρσ(n),where x0 ∈ Ω, σ(n) is a straight crack, and
n a unit vector normal to the crack. Then, the new solution
uρ ∈ H1(Ωρ) satis es

{
−div (c∇uρ) + uρ = v in Ωρ,

∂nuρ = 0 on ∂Ωρ,
(3)

Edge detection is equivalent to look for a subdomain of
Ω where the energy is small. So our goal is to minimize the
energy norm outside edges

j(ρ) = Jρ(uρ) =

∫
Ωρ

‖∇uρ‖
2. (4)

In our case, the cost function j has the following asymp-
totic expansion

j(ρ)− j(0) = ρ2G(x0, n) + ◦(ρ2), (5)

with

G(x0, n) = −π(∇u0(x0).n)(∇v0(x0).n)

−π|∇u0(x0).n|
2. (6)

and where v0 is the solution to the adjoint problem
{
−div(c∇v0) + v0 = −∂uJ(u) in Ω,

∂nv0 = 0 on ∂Ω.
(7)

The topological gradient could be written as

G(x, n) =< M(x)n, n >, (8)

whereM(x) is the 2× 2 symmetric matrix de ned by

M(x) = −π
∇u0(x)∇v0(x)T +∇v0(x)∇u0(x)T

2

−π∇u0(x)∇u0(x)T . (9)

For a given x, G(x, n) takes its minimal value when n is
the eigenvector associated to the lowest eigenvalue λmin of
M . This value will be considered as the topological gradient
associated to the optimal orientation of the crack σρ(n).
Our algorithm consists in inserting small heterogeneities

in regions where the topological gradient is smaller than a
given threshold α < 0. These regions are the edges ωρ of the
image. Our method can be interpreted as a linear isotropic
diffusion scheme. The algorithm is as follows

• Initialization : c = c0.

• Calculation of u0 and v0 : solutions of the direct (3)
and adjoint (7) problems.
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(a) Original image.
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(b) Noised image (SNR=17).
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(c) Identi ed edges by the
topological gradient.
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(d) Restored image (SNR=29).

Fig. 1. Application of our restoration algorithm to a 512×512
image.

• Computation of the 2×2matrix M and its lowest eigen-
value λmin at each point of the domain.

• Set

c1 =

{
ε if x ∈ Ω such thatλmin < α < 0, ε > 0
c0 elsewhere.

(10)

• Calculation of u1 solution to problem (3) using c1.

From the numerical point of view, it is more convenient to
simulate the cracks by a small value of c.
We present in gure 1 numerical tests. The rst image

(a) shows the original image. The second image (b) shows
the perturbed image, which is obtained with an additive gaus-
sian noise, with a SNR equal to 17. Then gure 1-(c) shows
the identi ed edges of the image by the topological gradient,
and nally, the image (d) is the restored image using our al-
gorithm. The SNR of the restored image is 29. One should
notice that this result is performed in only one iteration.
Figure 2 shows a zoom of the previous images, i.e. the

noised image and the restored image. One can see that the
edges are very well preserved, and the quality of the restored
image is very good.

4. A RESTORATION-BASED PREPROCESSING
ALGORITHM FOR IMAGE CLASSIFICATION

Inspired by the work of Aubert et al. [9, 10] in which the au-
thors propose a classi cation model coupled with a restora-
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(a) Zoom of the
noised image.
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(b) Zoom of the
restored image.

Fig. 2. Zoom of the noised and restored images.

tion process, we propose in this section to extend the topolog-
ical gradient approach applied to image restoration problem
[8] for the regularized classi caton problem. It consists rstly
in an iteration of the topological asymptotic analysis for the
image smoothering and secondly in thresholding the restored
image for its classi cation.
We still consider the following equation, which is the

restoration equation:
{
−div(c∇u) + u = u0 in Ω,

∂nu = 0 in Γ = ∂Ω,
(11)

but with c =
1

ε
in Ωρ and c = ε in σρ. σρ still represents the

contours of the image. As ε is supposed to be a small positive
real number, if we are on a contour, c = ε and then u and u0

are almost the same. But otherwise, c =
1

ε
and then the p.d.e.

is nearly equivalent to Δu = 0, which will provide a really
smooth image.
If we consider the same algorithm as in the previous sec-

tion (but with this new de nition of c1), we nd the contours
of the image, and smooth the image everywhere else. The
idea is then to simply threshold the smothered image: each
pixel is assigned to its closest class.
Figure 3 shows the original image (a), and the smooth

image provided by our improved restoration algorithm (b).
Then, we simply assign each pixel of this image to its closest
class, and we obtain image (c). In this experiment, we used 5
classes, and their values areC = {29; 71; 117; 146; 184}. For
comparison, gure 3-(d) shows the result of a thresholding
on the original image, which can be seen as the result of an
unregularized classi cation. We can see that we obtain very
smooth contours on the classi ed image.

5. COMPUTATIONAL COST

As the rst resolution of the direct problem is performed with
a constant value of c, it is possible to largely accelerate the
computation by using the DCT (Discrete Cosine Transform)
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(a) Original image.
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(b) Smooth image using
our algorithm.
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(c) Classi ed image
(5 classes).
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(d) Unregularized classi ed
image.

Fig. 3. Application of our restoration-based preprocessing al-
gorithm for image classi cation to a 150× 150 image.

method. If we consider the following cosine basis

φm,n = δm,n cos(mπx) cos(nπy)

where δm,n are appropriate normalisation coef cients, equa-
tion (2) is equivalent to

∑
m,n

(
1 + c(mπ)2 + c(nπ)2

)
um,nφm,n

=
∑
m,n

u0m,nφm,n, (12)

where
(
u0m,n

)
represents DCT coef cients of the original

image u0. It is then straightforward to identify (unm), the
DCT coef cients of u in (12), and then to compute u us-
ing an inverse DCT. The complexity of this resolution is then
O (N log(N))whereN is the size of the image (i.e. the num-
ber of pixels). Then, for the second resolution of the direct
problem with a non constant c, the DCT solver is used as
a preconditioner to the conjugate gradient algorithm. This
works very well because c is close to a constant; it is equal to
a constant except on the edges of the image.
One can see on gure 4 the computational cost of the algo-

rithms we presented in the previous sections, versus the size
of the image. The curve with crosses corresponds to the com-
putational cost when we use a Gauss elimination method for
solving the different partial differential equations, whereas
the curve with circles corresponds to a preconditioned con-
jugate gradient approach with the discrete cosine transform
(presented in the previous paragraph). One can see on this
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Fig. 4. Computational cost versus the size of the image for
the topological gradient algorithm using a Gauss Elimination
(GE) method (cross) or a Preconditioned Conjugate Gradient
(PCG) method (circle).

gure that the GE approach has a nearly quadratic complex-
ity whereas the PCG approach is nearly linear. As the equa-
tions are the same in our different applications, this gure
con rms the theoretical complexity of our algorithms: both
the restoration and classi cation processes we presented in
the previous sections are performed in only one iteration, and
with a O (N log(N)) complexity.

6. CONCLUSION

An application of the topological asymptotic expansion for
image restoration with edge detection has been presented in
this work. To make this method relevant with real life ap-
plications, we have used the Discrete Cosine Transform as
a preconditioner for the conjugate gradient method. The re-
sults obtained are very promising especially with computation
time and number of iterations. The extension of this method
to other problems in image processing such as classi cation
have also been presented, and the results are still obtained
very quickly.
This algorithm can be extended to three-dimensional im-

ages (such as movies for example), but also to color images.
Finally, the idea of using the topological derivative may be
extended to the inpainting and segmentation problems.
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