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ABSTRACT

We present a novel technique for image inpainting, the problem
of filling-in missing image parts. Image inpainting is ill-posed
and we adopt a probabilistic model-based approach to regular-
ize it. The main elements of our image model are, first, an
over-complete complex-wavelet image representation, which en-
sures good shift invariance and directional selectivity and, second,
a discrete-state/continuous-observation Hidden Markov Tree model
for the wavelet coefficients, which captures key statistical proper-
ties of natural image wavelet responses, such as heavy-tailed his-
tograms and persistence of large wavelet coefficients across scales.
We show how these ideas can be integrated into a multi-scale gener-
ative process for natural images and present alternative deterministic
and Markov chain Monte Carlo algorithms for image inpainting un-
der this model. We demonstrate the effectiveness of the method in
digitally restoring images of ancient wall-paintings.

Index Terms— Wavelet transforms, Image restoration, Monte
Carlo methods.

1. INTRODUCTION

Image inpainting, a term coined in the influential paper [1], refers
to the problem of filling-in missing image parts. Image inpaint-
ing, and the related technique of texture synthesis, have many prac-
tical applications, such as degraded film restoration, movie post-
production, photograph restoration and retouching, and damaged
paintings restoration. Apart from its practical applications, image
inpainting draws research interest as a model problem on which the
effectiveness of diverse image modeling approaches can be tested.

There is an abundance of image inpainting and texture synthesis
techniques in the literature; we can broadly divide existing meth-
ods into exemplar-based and model-based. The first class of tech-
niques utilizes non-parametric statistical image models [2–6]. While
exemplar-based techniques often achieve the most visually pleas-
ing results by exploiting information already present in the image,
they are data intensive and do not supply a compact image repre-
sentation for further image manipulation/description. The second
class of techniques uses either partial differential equation (PDE)
processes [1, 7, 8] designed to propagate image content into holes in
a way that favors good edge continuation, or parametric probabilistic
models [9,10] which capture and reproduce key statistical properties
of images of interest; the proposed method belongs to the latter class
of parametric probabilistic techniques.
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Among the parametric probabilistic models, those based on the
principle of sparse image representation in linear bases are recently
gaining significant attention, supported by studies on the statistics of
wavelet coefficients of natural images [11, 12]. Image wavelet coef-
ficient sparsity is also closely related to soft thresholding for image
denoising and utilized in data analysis techniques such as Matching
Pursuit or Basis Pursuit [13].

A number of recent inpainting methods build on the sparse im-
age representation principle, demonstrating promising results [14–
17]. However, a potential drawback of these techniques is that they
utilize sparsity promoting priors which treat each wavelet coefficient
independently. Various authors have argued that there are substantial
benefits in introducing additional structure by modeling the inter-
scale dependencies between wavelet coefficients; see e.g. [18] and
the references therein. Previous studies have mostly demonstrated
the effectiveness of structured models, such as the Hidden Markov
Tree Model (HMT), in the denoising problem [19, 20]. We argue
that, although imposing structured inter-scale Markov priors is more
challenging for the inpainting problem due to the missing image ar-
eas, the benefits of such a modeling approach can be substantial.
Intuitively, smaller part of the support of coarser scale filters falls in
image holes and thus coarser scale wavelet coefficients are less af-
fected by missing image parts and can lead and improve estimation
of fine scale coefficients through the interscale dependency mecha-
nism. Our paper, after reviewing the wavelet HMT model in Sec. 2,
shows in Sec. 3 how it can be efficiently applied for inpainting, and
then demonstrates in Sec. 4 its performance in filling-in ancient wall-
paintings with missing parts and other artificially occluded images.

2. IMAGE MODEL: HIDDEN MARKOV TREE ON
COMPLEX WAVELET COEFFICIENTS

We build our inpainting model upon a linear multiscale image rep-
resentation. Critically-sampled discrete wavelet transforms (DWT)
are neither shift-invariant nor directionally selective. Redundant,
over-complete representations overcome these limitations and are
thus better suited for our task [21]. In our work we use the Dual-
Tree Complex Wavelet Transform (DT-CWT) [22,23], which yields a
four-times overcomplete, near shift-invariant, Gabor-like frame im-
age representation consisting of six directionally selective complex-
valued subbands per scale at four-times the computational cost of the
critically-sampled DWT. An alternative representation with similar
properties could be the complex steerable pyramid [10].

The wavelet transformation, due to its good decorrelation effect,
is well-suited for statistical image modeling. However, independent
gaussian modeling of wavelet coefficients is inadequate due to the
following key wavelet coefficient properties of natural images [12]:

1. Heavy-tailed marginal histograms: Wavelet marginal his-
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Fig. 1. Quadtree dependence structure of the DT-CWT/HMT model:
each white node denotes a discrete state qt and the adjacent gray
node corresponds to the complex wavelet coefficient yt.

tograms have a strong zero peak due to the weak wavelet re-
sponse at smooth image parts spanning most of the image,
and heavy tails due to the strong wavelet response at edges.

2. Persistence across scales: Edges cause strong responses to
wavelet coefficients in their vicinity across multiple scales;
this manifests itself in bow-tie-like joint histograms of scale-
adjacent wavelet coefficients.

The heavy-tailed nature of marginal wavelet histograms can be mod-
eled by sparsity-promoting priors. An effective way to model the
inter-scale wavelet coefficient dependency is by means of scale-
recursive Markov models [18].

In this work we use the Hidden Markov Tree (HMT) model,
first introduced in the context of signal denoising in [19]. The
HMT model captures both the heavy-tailed property by modeling
the continuous wavelet observations as mixtures of gaussians, and
the inter-scale persistence by imposing a Markov scale dependence
structure on the discrete hidden variables, as shown in Fig. 1. In
our particular case of the DT-CWT, we follow the approach of [24],
modeling each complex coefficient as a mixture of spherical 2-D
gaussians and utilizing an independent tree for each of the six di-
rectional subbands. Let θ =

˘
π, {aji}, μ, Σ

¯
be the set of HMT

parameters, corresponding to prior root node state probabilities and,
for each scale, inter-scale state transition probabilities and mixture
means/covariances, respectively. Also let t index the T + 1 nodes of
the tree, where t = 0 is the root node, t = T is the last finest scale
node, and pt = �(t−1)/4� is t’s parent. Then the apriori probability
of a hidden state path q = (q0, . . . , qT )T under the model is

P (q) = πq0

TY

t=1

aqpt
qt , (1)

while the probability of the wavelet coefficients vector y =
(y0, . . . , yT )T , with yt = (yt,r, yt,i)

T gathering the real and imag-
inary parts of each complex wavelet coefficient, given the path q is

P (y|q) = N(y; μq, Σq) =

TY

t=0

N(yt; μqt , Σqt), (2)

where N(x; μ, Σ) denotes a multi-variate gaussian p.d.f. on x with
mean μ and covariance Σ.

Similarly to Hidden Markov Models (HMMs), the HMT is
amenable to efficient calculations using scale-recursive O(T ) al-
gorithms; in particular, given the values of wavelet coefficients y,
we can perform estimation, i.e. calculation of γt(i) = P (qt =
i|y), and decoding, i.e. calculation of the most probable path q̂ =
argmax P (q|y), using the upward-downward and Viterbi algo-
rithms, respectively; both just need an upward and then a downward
pass of the quadtree [19]. Model training, specifically maximum-
likelihood estimation of θ given training image data, is done by EM,
utilizing the upward-downward estimation algorithm as sub-routine.

In the case of the classic denoising problem [19], one observes
white gaussian noise corrupted image intensity values throughout the
image plane. Due to the orthogonal nature of the DWT we end up
with white gaussian noise corrupted wavelet coefficients yn, whose
probability given the path q can be shown to be

P (yn|q) = N(yn; μq, Σq + Σn) =

TY

t=0

N(yn,t; μqt , σ
2

qt
+ σ2

n),

(3)
where Σn = σ2

nI is the noise covariance. The last equation is very
similar to the non-noisy case of Eq. (2), and thus hidden state es-
timation can be performed efficiently using the upward-downward
algorithm; subsequent denoising just amounts to independent ma-
nipulation of each wavelet coefficient [19]. We see that noise inde-
pendence in the wavelet domain is crucial in making exact inference
and denoising with the HMT model tractable.

3. IMAGE INPAINTING WITH THE HMT MODEL

For inpainting the situation is more intricate than for the denoising
problem. In particular, the missing value structure of the inpainting
problem breaks down the orthogonal property of the wavelet trans-
form and introduces dependencies between wavelet coefficients.
More specifically, let us write x = (xT

o ,xT
h )T by splitting the M -

pixel image intensity vector x into its Mo-pixel observed part xo and
its Mm-pixel (Mm = M −Mo) missing part xm; then assuming
white gaussian spatial domain noise yields the observation model

P (xo|y) = N(xo; Ay, Σn), with A = WFs, Σn = σ2

nI, (4)

where W = [IMo×Mo OMo×Mh
] is the Mo×M inpainting projec-

tion matrix and Fs denotes the inverse (synthesis) DT-CWT. Simply
put, we only measure the wavelet coefficients y indirectly through a
map A, consisting of three steps: (1) inverse wavelet transform Fs,
(2) occlusion at the inpainting mask W , and (3) addition of noise
with covariance Σn. The non-orthogonal and non-invertible nature
of A, even if we used an orthogonal wavelet representation, pre-
cludes treating each wavelet coefficient separately as in Eq. (3).

We are interested in estimating the distribution of the wavelet
coefficients y, given the observations:

P (y|xo) ∝ P (xo|y)P (y) = P (xo|y)
X

q∈Q

P (y|q)P (q), (5)

where Q is the set of all possible paths q. Unfortunately, since the
wavelet coefficients y are coupled, we cannot estimate y with the ef-
ficient upward-downward algorithm applicable in the denoising sce-
nario, while explicitly summing over all paths q ∈ in Eq. (5) has
exponential complexity. We discuss next two approaches, one deter-
ministic and one stochastic, to efficiently estimate y. Both rely on
the fact that estimating y is straightforward when q is known and
vice versa. In particular,

P (y|q,xo) ∝ P (xo|y)P (y|q) = N(y; μy|q, Σy|q), (6)

with μy|q = Σy|q(Σ−1

q μq + AT Σ−1

n xo) and Σ−1

y|q = Σ−1

q +

AT Σ−1

n A. To efficiently obtain μy|q we solve the system
Σ−1

y|qμy|q = Σ−1

q μq + AT Σ−1

n xo iteratively with the conjugate

gradients (CG) method, using Σ−1

q as diagonal preconditioner. The
CG method avoids explicitly forming the system matrix Σ−1

y|q, only

requiring repeated computation of the matrix-vector product Σ−1

y|qy;

this involves computing Fsy and F T
s x, which can be done effi-

ciently with the backward (using the primal filter set) and forward
(using the dual filter set), respectively, discrete filterbank implemen-
tation of the bi-orthogonal DT-CWT [13, 22].
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3.1. Alternating Optimization Approach

In the spirit of EM-like approaches [16,17], we can cycle in an ICM-
inspired [25] fashion between hidden path and wavelet coefficient
optimization until convergence to a self-consistent solution. Specifi-
cally, we can alternate until convergence the following two steps: (1)
Given a guess yi−1 for the wavelet coefficients, compute the most
probable path qi = argmax P (q|yi−1) using the Viterbi algorithm
outlined in Sec. 2. (2) Given qi, compute yi as the mode μy|qi

of
the gaussian P (y|qi,xo) given in Eq. (6). Although this method
cannot yield a complete description of the wavelet coefficient poste-
rior (5), it can lead to a satisfactory inpainting result in practice.

3.2. Handling Missing Data by Efficient Block Gibbs Sampling

A more principled approach to inpainting using the HMT model is
based on random sampling from the joint distribution of the wavelet
coefficients and the hidden state path

P (y,q|xo) ∝ P (xo|y,q)P (y,q) = P (xo|y)P (y|q)P (q). (7)

Drawing samples directly from Eq. (7) is infeasible. However, as we
detail next, we can design a block Gibbs sampler which alternates
between sampling from y|q,xo and q|y,xo, yielding a practical
MCMC method which efficiently explores the joint distribution (7).

3.2.1. Wavelet sampling conditional on hidden state: y|q,xo

When the hidden state q is given, it can be readily verified that
we can draw a sample from the gaussian P (y|q,xo) given in
Eq. (6) by means of the following procedure: (1) Draw sample
yu,s ∼ N(μq, Σq); (2) Draw sample xo,s ∼ N(xo, Σn); (3) Solve
ys = Σy|q(Σ−1

q yu,s + AT Σ−1

n xo,s).

3.2.2. Hidden state path sampling conditional on wavelet coeffi-
cients: q|y,xo

Given an estimate of the wavelet coefficients, the distribution of hid-
den paths is independent of xo:

P (q|y,xo) = P (q|y). (8)

Drawing a random sample q from Eq. (8) is distinct from Viterbi
decoding, which yields the most probable path. The conventional
approach to sampling from Eq. (8) (see e.g. [20]) is to update each
hidden markov node independently, i.e. sequentially draw samples
from P (qt|y,q−t), where q−t denotes all but the t-th discrete hid-
den state. However this single-site update strategy can lead to slow
mixing; a much better alternative is to draw an independent sample
of the whole hidden path q at once. This can be achieved by an ef-
ficient recursive algorithm whose HMM version was first developed
in [26]. For the case of the HMT model the algorithm amounts to
the usual upward estimation pass on the tree, which computes the
quantity βt(i) = P (qt = i|yTt) (yTt denotes the y values in the
subtree with root t) [19], followed by a stochastic Viterbi-like down-
ward back-tracking pass in which: (1) we assign the root node’s state
with probability P (q0 = i|y) ∼ πiβ0(i) and (2) recursively, given
the parent’s assigned state, assign the t node’s state with probability
P (qt = i|qpt = j,y) ∼ ajiβt(i).

3.2.3. Summarizing Gibbs samples through Rao-Blackwellization

Alternating the steps outlined in Secs. 3.2.1 and 3.2.2, and possi-
bly discarding the first few ‘burn-in’ samples, yields a sequence
{{q1,y1}, {q2,y2}, . . . , {qS ,yS}} of Gibbs samples from the

joint distribution (7), which we typically wish to summarize into a
single wavelet coefficient estimate ŷ that will produce the final im-
age inpainting result x̂ = Fsŷ. There are many plausible criteria for
selecting ŷ, the MMSE being the most commonly used.

The conventional estimator of the MMSE wavelet coefficients
is the sample mean ŷS = 1

S

PS

s=1
ys. However we opt here for

the Rao-Blackwellized (RB) estimator ŷRB = 1

S

PS

s=1
E[y|qs,xo]

which significantly reduces the variance of the estimate [27]; in-
tuitively, this is achieved because for each hidden path sample
qs the RB estimator utilizes the exact MMSE estimate μy|qs

=
E[y|qs,xo] instead of relying on the single draw ys ∼ y|qs,xo.
Thanks to the reduced variance of the RB estimator and the rapid
chain mixing facilitated by the efficient block Gibbs sampling steps
described above, we can compute satisfactory image inpainting re-
sults after only very few Gibbs sampling steps S.

3.3. PDE-based Initialization

Both the alternating optimization and the Gibbs sampling algorithms
for inpainting under the HMT model are iterative and thus benefit
from a good initial guess. We get this guess by solving the Laplace
PDE equation ∇2u = 0 in image holes, with Dirichlet boundary
conditions at the known image boundaries. This can be considered
as a simple and efficient form of PDE-based inpainting which has
been proven adequate in our experiments.

4. INPAINTING EXPERIMENTS

Our interest in image inpainting is motivated by the problem of dig-
ital restoration of the ancient wall-paintings discovered in the pre-
historic settlement of Akrotiri, Thera, which are famous for their
thematic gamut, their artistic value, and the abundant and diversified
information they yield about the Aegean world more than 3500 years
ago [28]. Restoring these unique 17th century B.C. wall-paintings is
particularly challenging; damages include smaller or bigger missing
parts, heavy or finer cracks. In Fig. 2 we show the result of applying
our HMT inpainting technique (solved with Gibbs sampling) on a
representative Theran wall-painting image on which we have over-
laid the manually-specified inpainting mask. The results are quite
satisfactory, especially in smooth areas; however further improve-
ments would be desirable, e.g. sharper edge continuation at big gaps.

To further validate the proposed approach, we have performed
image inpainting experiments on artificially occluded images with
known ground truth. Figure 3 compares inpainting results on the
Lena image with the Laplace PDE method and the HMT model,
solved with either the alternating optimization or the Gibbs sam-
pling technique. Our results were computed with 10 alternating op-
timization/Gibbs sampler steps, utilizing 3 HMT hidden states and
6 analysis levels, and running 50 conjugate gradient iterations for
each sample. HMT model training was done with EM [19] on the
Laplace PDE image estimate. We observe that the proposed HMT
inpainting model produces qualitative better, sharper results than the
Laplace method, while also having better PSNR values (discrepancy
between inpainting result and ground-truth in the occluded part).

5. DISCUSSION AND FUTURE WORK

The main contribution of our work is to incorporate structured inter-
scale dependencies of wavelet coefficients into a sound probabilis-
tic treatment of the image inpainting problem in the framework of
sparse image representations. There are many promising directions
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(a) Theran wall painting with missing parts annotated

(b) Inpainting result with proposed HMT model

Fig. 2. Inpainting on ancient Thera wall-painting.

for future work; for example, finding ways to efficiently integrate
intra-scale wavelet dependencies in the model can further improve
the performance of the model, especially in sharply propagating lin-
ear image structures in large holes; another promising approach is to
integrate into the model additional families of wavelet dictionaries,
which has been shown to result in substantial performance improve-
ments [15,17,20]. Regarding the practical applicability of inpainting
approaches in general, it is important to pursue automatic missing
part detection techniques, that will require little manual user effort.

6. REFERENCES

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in
Proceedings of SIGGRAPH, 2000, pp. 417–424.

[2] J. S. De Bonet, “Multiresolution sampling procedure for analysis and synthesis
of texture images,” in Proc. of SIGGRAPH, 1997, pp. 361–368.

[3] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,”
in Proc. ICCV, 1999, vol. 2.
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