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ABSTRACT

We propose an extension of the recently devised SURE-LET

grayscale denoising approach for multichannel images. As-

suming additive Gaussian white noise, the unknown linear
parameters of a transform-domain pointwise multichannel thre-

sholding are globally optimized by minimizing Stein’s unbi-

ased MSE estimate (SURE) in the image-domain.

Using the undecimated wavelet transform, we demonstrate

the efficiency of this approach for denoising color images by

comparing our results with two other state-of-the-art denois-

ing algorithms.

Index Terms— Multichannel image denoising, multichan-

nel wavelet thresholding, multichannel SURE minimization

1. INTRODUCTION

Transform-domain processing has become a standard proce-

dure for efficient image denoising, where the distorting noise

is often assumed as additive and Gaussian. In particular, mul-

tiresolution tools such as the wavelet transform [1] often pro-

vide a sparse signal representation that makes relatively sim-

ple operations —such as thresholding— very efficient [2, 3,

4, 5].

Recently, we developed a general procedure to optimize

a large class of processing applied in a possibly redundant

linear transform-domain [5]. It combines the image-domain
minimization of Stein’s unbiased risk estimate [6] (SURE)

with a linear expansion of thresholds (LET). Thus, we called

this approach SURE-LET. The very competitive results ob-

tained for grayscale images have encouraged us to extend the

SURE-LET strategy to multichannel image denoising. For

such signals, the application of existing grayscale denoisers

on each separate channel is often sub-optimal due to the po-

tentially strong interchannel similarities. Significantly better

results are obtained by devising specific multichannel algo-

rithms such as [3, 4] or “decorrelating” the data. The latter

solution has been widely exploited in color image denoising,
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where the data are first projected on a more suitable color

space (e.g. an orthogonal luminance-chrominance (YUV)

space in [7]) than the standard red-green-blue (RGB) repre-

sentation.

In this paper, we first recall the two key ingredients, SURE

and linear parametrization, of the SURE-LET approach and

give an explicit expression of a Stein-like unbiased estimate

of the mean-squared error (MSE) between a denoised mul-

tichannel image and its underlying unknown noise-free ver-

sion. Secondly, we propose a simple pointwise multichannel

thresholding function, which exploits the interchannel simi-

larities to efficiently reduce the noise while preserving most of

the detail. Finally, we show promising results in color image

denoising, using the undecimated wavelet transform (UWT).

2. CONTEXT

We denote a N -pixel image with C channels, typically C = 3
for RGB images, as a C × N matrix whose columns are the

channel values of each pixel:

x = [x1,x2, . . . ,xN ], where xn = [xn,1, xn,2, . . . , xn,C ]T

This image is assumed to be corrupted by an additive “chan-

nelwise” Gaussian white noise b = [b1,b2, . . . ,bN ] with

known interchannel covariance matrix Γ, i.e.

E
{
bnbT

n′
}

= Γ δn−n′

where E {·} stands for the mathematical expectation.

The resulting noisy image is denoted by y = [y1,y2, . . . ,yN ].
Thus we can write the following:

y = x+ b. (1)

We assume that the only source of randomness is the noise

b. As a consequence, the noisy image y is also random,

whereas the original noise-free image x is assumed not to be

drawn from some random process.

Hence, denoising the image y consists in finding an es-

timate x̂ of x as a function of only the noisy observation y.
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The quality of the denoising will be evaluated using the clas-

sic Peak Signal-to-Noise Ratio (PSNR)

PSNR = 10 log10

(
2552

MSE

)
dB (2)

which involves the standard Mean-Squared Error (MSE) cri-

terion:

MSE =
1

CN
Tr

{
(x̂− x)(x̂− x)T

}
(3)

3. MULTICHANNEL SURE-LET

3.1. Principle

In this paper, we will focus on linear transform-domain de-

noising, in particular:

x̂ = F(y) =
(
RΘ(DyT︸ ︷︷ ︸

w

)
)T

(4)

where:

• D andR are respectively the L×N decomposition and

N×L reconstruction matrix associated with the consid-

ered linear transformation such that RD = Identity.

For redundant transforms (e.g. the undecimated wavelet

transform), L > N .

• Θ(w)=
[
θl(wl)T

]
1≤l≤L

with θl(wl)=[θl,c(wl)]1≤c≤C

is a (spatially) pointwise multichannel thresholding func-

tion that will be defined in Section 3.2.

Our denoising process F(y) follows an extended version of

the SURE-LET approach proposed in [5], i.e.

1. F is built as a linear expansion of possibly nonlinear

functions Fk:

F(y) =
K∑

k=1

aT
k

(
RΘk(DyT)

)T

︸ ︷︷ ︸
Fk(y)

= [aT
1 ,aT

2 , . . . ,aT
K ]︸ ︷︷ ︸

AT

⎡
⎢⎢⎢⎣
F1(y)
F2(y)

...

FK(y)

⎤
⎥⎥⎥⎦ (5)

whereA is the KC×C matrix of unknown parameters.

2. In general (i.e. non-orthogonal transforms), the search

for the optimal, in the minimum MSE sense, parame-

tersA has to be performed globally in the image-domain
[5]. In practice, we cannot compute the actual MSE de-

fined in (3), since the original image is obviously not

available. Instead, we determine these unknown param-

eters A by minimizing Stein’s Unbiased Risk Estimate
[6], which is an unbiased estimate of the actual MSE,

based on the noisy image y only. For multichannel sig-

nals, this MSE estimate is given by:

Theorem 1 The following random variable

ε =
1

NC
Tr

{
(F(y) − y) (F(y) − y)T

}
+

2
NC

div {ΓF(y)} − 1
C

Tr {Γ} (6)

is an unbiased estimate of the MSE, i.e.

E {ε} =
1

NC
E

{
Tr

{
(x̂− x)(x̂− x)T

}}
,

where

div {F(y)} =
C∑

c=1

N∑
n=1

∂Fn,c(y)
∂yn,c

is a generalized divergence operator.

In the LET framework (5), and after a few formal alge-

braic manipulations, the expression (6) can be rewritten

as follows:

ε =
1

NC
Tr

{
ATMA− 2PTA

}
+

1
NC

Tr
{
yyT

} − 1
C

Tr {Γ} (7)

where we have defined:

M = [Fk(y)FT
l (y)]1≤k,l≤K and P = [pk]1≤k≤K

where

pk = Fk(y)yT −

Γ

⎡
⎢⎣

αTΘ′k;1,1(w) · · · αTΘ′k;1,C(w)
...

. . .
...

αTΘ′k;C,1(w) · · · αTΘ′k;C,C(w)

⎤
⎥⎦

with α=diag{DR} andΘ′k;i,j(w)=
[
∂θk;l,i(wl)

∂wl,j

]
1≤l≤L

.

The computation of the diagonal of DR can be per-

formed offline using the numerical algorithm described

in [5]. Therefore, we do not need the explicit form of

these decomposition and reconstruction matrices.

The minimization of (7) with respect to the unknown

parametersA boils down to the following linear system

of equations:

A = M−1P (8)

which makes our algorithm fast and simple to imple-

ment.

3.2. Multichannel Thresholding

Now, we propose to extend the monochannel denoiser, de-

scribed in [5], by taking into account the potentially strong

interchannel similarities as follows:

θl(wl) = aT
1wl + γ

(
wT

l Γ
−1wl

)
aT

2wl (9)

770



where we have experimentally chosen γ(x) = e−
1
C ( x

9 )4

as

discriminator between large/small coefficients. If C = 1, we

obviously obtain the grayscale thresholding function of [5].

The potential PSNR disparities between the channels are

explicitly taken into account inside the argument of the zone

selector γ, as well as implicitly through the C ×C parameter

matrices a1 and a2.

4. EXPERIMENTS

We have applied our multichannel SURE-LET thresholding

for denoising color images using J iterations1 of the undeci-

mated wavelet transform (UWT)2 with symmetric boundaries

handling. A new thresholding function (9) was applied inside

each of the 3J wavelet highpass subbands, while keeping the

lowpass residual unchanged. All the parameters3 have been

optimized in the image-domain due to the non-orthogonality

of the UWT. The experiments have been executed on the set

of standard RGB images shown in Figure 1.

Fig. 1. Test images used in the experiments, referred to as

Image 1 to Image 6 (numbered from left to right, top-down).

We have corrupted these test images with an additive color-

wise Gaussian white noise of known intercolor covariance

matrix:

Γ =

⎡
⎣ σ2

R 0 0
0 σ2

G 0
0 0 σ2

B

⎤
⎦

In Table 1 we compare our PSNR results with those ob-

tained by running two other state-of-the-art color denoising

algorithms:

• Pižurica et al. ProbShrink-MB4 [4], which is a multi-

band extension of their original wavelet-based grayscale

1J = 4 (resp. J = 5) for 256 × 256 (resp. 512 × 512) color images.
2Similarly to what was observed in [5], Haar filters turn out to give the

best results.
3Globally K = 3J × 32 × 2 linear parameters
4Matlab code available online at http://telin.rug.ac.be/

˜sanja/

denoiser. We have applied it with the same transform

(UWT Haar) as ours.

• Foi et al. pointwise SA-DCT5 [7], which is the applica-

tion of their grayscale shape-adaptive DCT denoiser in

the opponent color space, but using the adaptive neigh-

borhoods defined in the luminance channel for all chan-

nels.

We notice that we obtain a significant gain (about +1 dB)

over the ProbShrink-MB, and similar results to the pointwise

SA-DCT. Moreover, our denoised images contain very few

color artifacts, and represent a good trade-off between noise

removal and preservation of small details (see Figure 2).

From a computational point of view, the execution of our

current unoptimized Matlab implementation lasts around 12s

for 256 × 256 RGB images, which is slightly faster than the

two other algorithms that make use of pre-compiled codes.

An interesting fallout of our linear parametrization is that

the resulting thresholding function (9) is very robust to any

linear color space transformation (e.g. similar results are ob-

tained in the RGB and in the more “decorrelated” luminance-

chrominance representation), which is not the case with other

algorithms.

Table 1. Comparison of some state-of-the-art color image

denoising methods.
σR = σG = σBσR = σG = σBσR = σG = σB 5 10 20 30 50 100

Input PSNR 34.15 28.13 22.11 18.59 14.15 8.13

Method Image 1 256 × 256

ProbShrink-MB[4] 37.99 34.68 31.84 30.19 27.94 24.73

SA-DCT[7] 38.61 35.64 32.96 31.38 29.15 25.90
Our method 38.49 35.38 32.73 31.18 29.09 25.81

Method Image 2 512 × 512

ProbShrink-MB[4] 37.43 34.35 31.61 30.03 28.04 25.45

SA-DCT[7] 37.69 34.97 32.62 31.21 29.25 26.47

Our method 37.98 35.02 32.51 31.05 29.16 26.56
Method Image 3 512 × 512

ProbShrink-MB[4] 36.47 33.46 31.10 29.73 27.82 25.04

SA-DCT[7] 36.79 33.68 31.55 30.31 28.51 25.80
Our method 36.82 33.76 31.45 30.16 28.43 25.80

Method Image 4 512 × 512

ProbShrink-MB[4] 38.82 35.31 32.11 30.31 27.86 24.59

SA-DCT[7] 39.45 36.36 33.38 31.59 29.22 26.05

Our method 39.49 36.35 33.31 31.52 29.23 26.10
Method Image 5 512 × 512

ProbShrink-MB[4] 34.85 30.06 26.12 24.18 22.01 19.95

SA-DCT[7] 35.22 30.61 26.88 25.06 23.02 20.52

Our method 35.18 30.65 26.93 25.03 22.91 20.69
Method Image 6 512 × 512

ProbShrink-MB[4] 35.84 31.98 28.97 27.41 25.48 22.88

SA-DCT[7] 36.34 32.33 29.39 27.92 26.10 23.62

Our method 36.21 32.44 29.57 28.07 26.24 23.76

Note: output PSNRs have been averaged over eight noise realizations.

5Matlab code available online at http://www.cs.tut.fi/˜foi/
SA-DCT/#ref_software
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(A) (B)

(C) (D) (E)

Fig. 2. (A) Part of the noise-free Image 4. (B) Part of the noisy Image 4: PSNR = 18.59 dB. (C) Result of the ProbShrink-MB:

PSNR = 30.31 dB. (D) Result of the pointwise SA-DCT: PSNR = 31.59 dB. (E) Result of our method: PSNR = 31.52 dB.

5. CONCLUSION

We presented an extension of the SURE-LET denoising ap-

proach introduced in [5] to properly handle multichannel im-

ages. For color image denoising, the resulting pointwise mul-

tichannel denoiser applied within the undecimated wavelet

transform outperforms other state-of-the-art wavelet-based al-

gorithms. Despite its lower complexity, our strategy is even

competitive with respect to a recent shape-adaptive method.
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