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ABSTRACT

We propose an image deconvolution algorithm when the data is

contaminated by Poisson noise. The image to restore is assumed

to be sparsely represented in a dictionary of waveforms such as

the wavelet or curvelet transform. Our key innovations are: First,

we handle the Poisson noise properly by using the Anscombe

variance stabilizing transform leading to a non-linear degrada-

tion equation with additive Gaussian noise. Second, the decon-

volution problem is formulated as the minimization of a convex

functional with a data-fidelity term reflecting the noise proper-

ties, and a non-smooth sparsity-promoting penalties over the im-

age representation coefficients (e.g. �1-norm). Third, a fast iter-

ative backward-forward splitting algorithm is proposed to solve

the minimization problem. We derive existence and uniqueness

conditions of the solution, and establish convergence of the it-

erative algorithm. Experimental results are carried out to show

the striking benefits gained from taking into account the Pois-

son statistics of the noise. These results also suggest that using

sparse-domain regularization may be tractable in many deconvo-

lution applications, e.g. astronomy or microscopy.

Index Terms— Deconvolution, Poisson noise, Proximal

iteration, forward-backward splitting, Iterative thresholding,

Sparse representations.

1. INTRODUCTION

Deconvolution is a longstanding problem in many areas of sig-

nal and image processing (e.g. biomedical imaging [1], astron-

omy [2], remote-sensing, to quote a few). For example, research

in astronomical image deconvolution has recently seen consider-

able work, partly triggered by the Hubble space telescope (HST)

optical aberration problem at the beginning of its mission. In

biomedical imaging, researchers are also increasingly relying on

deconvolution to improve the quality of images acquired by con-

focal microscopes. Deconvolution may then prove crucial for

exploiting images and extracting scientific content.

There is an extensive literature on deconvolution problems.

One might refer to well-known dedicated monographs on the

subject. In presence of Poisson noise, several deconvolution

methods have been proposed such as Tikhonov-Miller inverse

filter and Richardson-Lucy (RL) algorithms; see [1, 2] for an ex-

cellent review. The RL has been used extensively in applications

because it is adapted to Poisson noise. The RL algorithm, how-

ever, amplifies noise after a few iterations, which can be avoided

by introducing regularization. In [3], the authors presented a

Total Variation (TV)-regularized RL algorithm, and Starck et al.

advocated a wavelet-regularized RL algorithm [2].

In the context of deconvolution with gaussian white noise,

sparsity-promoting regularization over orthogonal wavelet co-

efficients has been recently proposed [4, 5]. Generalization to

frames was proposed in [6, 7]. In [8], the authors presented an

image deconvolution algorithm by iterative thresholding in an

overcomplete dictionary of transforms. However, all sparsity-

based approaches published so far have mainly focused on

Gaussian noise.

In this paper, we propose an image deconvolution algorithm

for data blurred and contaminated by Poisson noise. The Poisson

noise is handled properly by using the Anscombe VST, leading to

a non-linear degradation equation with additive Gaussian noise,

see (2). To regularize the solution, we impose a sparsity prior

on the representation coefficients of the image to restore, e.g.

wavelet or curvelet coefficients. Then, the deconvolution prob-

lem is formulated as the minimization of a convex functional with

a data-fidelity term reflecting the noise properties, and a non-

smooth sparsity-promoting penalties over the image representa-

tion coefficients. Inspired by the work in [5], a fast proximal

iterative algorithm is proposed to solve the minimization prob-

lem. We also provide an analysis of the optimization problem

and establish convergence of the iterative algorithm. Experimen-

tal results are carried out to compare our approach and show the

striking benefits gained from taking into account the Poisson na-

ture of the noise.

Notation
Let H a real Hilbert space, here a finite dimensional vector sub-

space of R
n. We denote by ‖.‖2 the norm associated with the in-

ner product inH, and I is the identity operator onH. x and α are

respectively reordered vectors of image samples and transform

coefficients. A function f is proper if it is not identically +∞
everywhere. A function f is coercive, if lim‖x‖2→+∞ f (x) =
+∞. Γ0(H) is the class of all proper lower semi-continuous

convex functions fromH to ]−∞,+∞]. The subdifferential of

f is denoted ∂f .

2. PROBLEM STATEMENT

Consider the image formation model where an input image x is

blurred by a point spread function (PSF) h and contaminated by

Poisson noise. The observed image is then a discrete collection

of counts y = (yi)1≤i≤n where n is the number of samples.

Each count yi is a realization of an independent Poisson random

variable with a mean (h�x)i, where � is the circular convolution

operator. Formally, this writes yi ∼ P ((h � x)i).
A naive solution to this deconvolution problem would be to

apply traditional approaches designed for Gaussian noise. But
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this would be awkward as (i) the noise tends to Gaussian only

for large mean (h�x)i (central limit theorem), and (ii) the noise

variance depends on the mean anyway. A more adapted way

would be to adopt a bayesian framework with an adapted anti-

log-likelihood score reflecting the Poisson statistics of the noise.

Unfortunately, doing so, we would end-up with a functional

which does not satisfy some key properties (the Lipschitzian

property in [5]), hence preventing us from using the backward-

forward splitting proximal algorithm to solve the optimization

problem. To circumvent this difficulty, we propose to handle the

noise statistical properties by using the Anscombe VST defined

as

zi = 2
q

yi +
3
8
, 1 ≤ i ≤ n. (1)

Some previous authors [9] have already suggested to use the

Anscombe VST, and then deconvolve with wavelet-domain reg-

ularization as if the stabilized observation zi were linearly de-

graded by h and contaminated by additive Gaussian noise. But

this is not valid as standard asymptotic results of the Anscombe

VST state that

zi = 2
q
(h � x)i +

3
8
+ ε, ε ∼ N (0, 1) (2)

where ε is an additive white Gaussian noise of unit variance. In

words, z is non-linearly related to x. In Section 4.1, we pro-

vide an elegant optimization problem and a fixed point algorithm

taking into account such a non-linearity.

3. SPARSE IMAGE REPRESENTATION

Let x ∈ H be an
√

n × √n image. x can be written as the

superposition of elementary atoms ϕγ parameterized by γ ∈ I
such that:

x =
X
γ∈I

αγϕγ = Φα, |I| = L (3)

We denote by Φ the dictionary i.e. the n × L matrix whose

columns are the generating waveforms (ϕγ)γ∈I all normalized

to a unit �2-norm. The forward transform is then defined by a

non-necessarily square matrix T = ΦT ∈ R
L×n with L � n.

When L > n the dictionary is said to be redundant or over-

complete. In the case of the simple orthogonal basis, the inverse

transform is trivially Φ = TT. Whereas assuming that T is a

tight frame implies that the frame operator satisfies TTT = AI,

where A > 0 is the tight frame constant. For tight frames, the

pseudo-inverse reconstruction operator reduces to A−1T.

Our prior is that we are seeking for a good representation

of x with only few significant coefficients. This makes sense

since most practical signals or images are compressible in some

transform domain (e.g. wavelets, curvelets, DCT, etc). These

transforms generally correspond to an orthogonal basis or a tight

frame. In the rest of the paper, Φ will be an orthobasis or a tigth

frame ofH.

4. SPARSE ITERATIVE DECONVOLUTION

We first define the notion of a proximity operator, which was

introduced in [10] as a generalization of the notion of a convex

projection operator.

Definition 1 (Moreau[10]). Let ϕ ∈ Γ0(H). Then, for every x ∈
H, the function y �→ ϕ(y)+‖x− y‖2 /2 achieves its infimum at
a unique point denoted by proxϕ x. The operator proxϕ : H →
H thus defined is the proximity operator of ϕ.

4.1. Optimization problem

The class of minimization problems we are interested in can be

stated in the general form [5]:

arg min
x∈H

f1(x) + f2(x). (4)

where f1 ∈ Γ0(H), f2 ∈ Γ0(H) and f1 is differentiable with

κ-Lipschitz gradient. We denote byM the set of solutions.

From (2) and (3), we immediately deduce the data fidelity term

F ◦H ◦ Φ (α), with (5)

F : η �→
nX

i=1

f(ηi), f(ηi) =
1

2

„
zi − 2

q
ηi +

3
8

«2

,

where H denotes the (block-Toeplitz) convolution operator.

From a statistical perspective, (5) corresponds to the anti-log-

likelihood score.

Adopting a bayesian framework and using a standard max-

imum a posteriori (MAP) rule, our goal is to minimize the fol-

lowing functional with respect to the representation coefficients

α

(Pλ,ψ) : arg min
α

J(α) (6)

J : α �→ F ◦H ◦ Φ (α)| {z }
f1(α)

+ ıC ◦ Φ (α) + λ

LX
i=1

ψ(αi)| {z }
f2(α)

,

where we implicitly assumed that (αi)1≤i≤L are independent

and identically distributed with a Gibbsian density ∝ e−λψ(αi).

Notice that f2 is not smooth. The penalty function ψ is chosen to

enforce sparsity, λ > 0 is a regularization parameter and ıC is the

indicator function of a convex set C. In our case, C is the positive

orthant. We remind that the positivity constraint is because we

are fitting Poisson intensities, which are positive by nature. We

have the following,

Proposition 1.
• f1 is convex function. It is strictly convex if Φ is an ortho-

basis and ker (H) = ∅ (i.e. the spectrum of the PSF does
not vanish).

• f1 is continuously differentiable with a κ-Lipschitz gradi-
ent where

κ �
`

2
3

´3/2
4A ‖H‖22 ‖z‖∞ < +∞. (7)

• (Pλ,ψ) is a particular case of problem (4).

4.1.1. Characterization of the solution

Proposition 2. Since J is coercive and convex, the following
holds:

1. Existence: (Pλ,ψ) has at least one solution, i.e. M 
= ∅.
2. Uniqueness: (Pλ,ψ) has a unique solution if Φ is a basis

and ker (H) = ∅, or if ψ is strictly convex.

Proof: The existence is obvious because J is coercive. If Φ
is an ortho-basis and ker (H) = ∅ then f1 is strictly convex and

so is J leading to a strict minimum. Similarly, if ψ is strictly

convex, so is f2, hence J .
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4.1.2. Proximal iteration

For notational simplicity, we denote by Ψ the function α �→P
i ψ(αi). The following useful lemmas are first stated:

Lemma 1. The gradient of∇f1 is

∇f1(α) = ΦT ◦H∗ ◦ ∇F ◦H ◦ Φ (α) (8)

with

∇F (η) =

 
−zip

ηi + 3/8
+ 2

!
1�i�n

(9)

The proof is straightforward.

Lemma 2. The proximity operator of f2 is given by

proxf2
(α) = PC′ ◦ (proxλψ αi)1�i�L (10)

where PC′ = proxıC′ = A−1ΦT ◦PC ◦Φ+
`
I−A−1ΦT ◦ Φ´,

PC is the projector onto the positive orthant (PCη)i = max(ηi, 0).
proxλψ is given by Theorem 2 for a wide class of penalties ψ.

Proof: Using successively [5, Proposition 27] and Theorem

2, we obtain proxf2
= PC′ ◦proxλΨ = PC′(proxλψ αi)1�i�L.

From, [11, Proposition 11] we have

PC′ = proxıC′ = proxıC◦Φ = I+A−1ΦT ◦ (PC − I) ◦ Φ.

We are now ready to state our main proximal iterative algorithm

to solve the minimization problem (Pλ,ψ):

Theorem 1. For t ≥ 0, let (μt)t be a sequence in ]0,+∞[ such
that 0 < inft μt � supt μt <

`
3
2

´3/2
/
`
2A ‖H‖22 ‖z‖∞

´
. Fix

α0 ∈ H, for every t � 0, set

αt+1 = proxμtf2
(αt − μt (∇f1(αt))) (11)

where ∇f1 and proxμtf2
are given by Lemma 1 and 2. Then

(αt)t≥0 converges (weakly) to a solution of (Pλ,ψ).

Proof: We give a sketch of the proof. The main theorem on

the proximal iteration can be found in [5, Theorem 3.4]. Hence,

combining this theorem with Lemma 1, Lemma 2 and Proposi-

tion 1, the result follows.

Note that if the PSF h is low-pass normalized to a unit sum, then

‖H‖22 = 1.

We now turn to proxδψ which is given by the following result:

Theorem 2. Suppose that ψ satisfies, (i) ψ is convex even-
symmetric , non-negative and non-decreasing on [0,+∞), and
ψ(0) = 0. (ii) ψ is twice differentiable on R \ {0}. (iii) ψ is
continuous on R, it is not necessarily smooth at zero and admits
a positive right derivative at zero ψ

′
+(0) = limh→0+

ψ(h)
h

> 0.
Then, the proximity operator proxδψ(β) = α̂(β) has exactly
one continuous solution decoupled in each coordinate βi :

α̂i(βi) =

(
0 if |βi| � δψ

′
+(0)

βi − δψ
′
(α̂i) if |βi| > δψ

′
+(0)

(12)

A proof of this theorem can be found in [12]. Among the

most popular penalty functions ψ satisfying the above require-

ments, we have ψ(αi) = |αi|, in which case the associated prox-

imity operator is soft-thresholding. In this case, iteration (11) is

essentially an iterative thresholding algorithm with a positivity

constraint.

5. EXPERIMENTAL RESULTS

The performance of our approach has been assessed on several

2D datasets, from which we here illustrate two examples. Our

algorithm was compared to RL without regularization, RL with

multi-resolution support wavelet regularization [2, RL-MRS],

the naive proximal method that would assume the noise to be

Gaussian (NaiveGauss), and the approach of [9] (AnsGauss). For

all results presented, each algorithm was run with 200 iterations,

except RL which was stopped when its MSE was smallest.

In Fig.1, the original Lena image with a maximum intensity

of 30 is depicted in (a), its blurred and blurred+noisy versions

are in (b) and (c). With Lena, and for NaiveGauss, AnsGauss

and our approach, the dictionary Φ contained the curvelet tight

frame. The deconvolution results are shown in Fig.1(d)-(h). As

expected, the RL is the worst as it lacks regularization. There are

also noticeable artifacts in NaiveGauss, AnsGauss and RL-MRS.

Our deconvolved image appears much cleaner. This visual im-

pression is confirmed by quantitative measures of the quality of

deconvolution, where we used both the mean �1-error (adapted to

Poisson noise), and the well-known MSE criteria. The mean �1-

error for Lena is shown in Tab.1 (similar results were obtained for

the MSE). In general, our approach performs very well. At low

intensity levels, RL-MRS has the smallest error very compara-

ble to our approach. For the other intensity levels, our algorithm

provides the best performance. At high intensity levels, Naive-

Gauss is competitive. This comes as no surprise since this is an

intensity regime where Poisson noise approaches the Gaussian

behavior. On the other hand, the results reveal that AnsGauss

performs poorly just after RL, probably because it does not han-

dle properly the non-linearity of the degradation model (2) after

the VST.

We further illustrate the capabilities of our approach on a

confocal microscopy simulation. We have created a phantom of

an image of a neuron dendrite segment with a mushroom-shaped

spines, see Fig.2. The experimental settings were the same as

for Lena except that the dictionary here contained the wavelet

transform. The findings are similar to those of Lena both visually

and quantitatively.

Intensity regime

Method ≤ 5 ≤ 30 ≤ 100 ≤ 255
Our method 0.39 0.93 2.63 7.21

NaiveGauss 0.59 1.65 3.56 6.9

AnsGauss 0.87 2.33 4.61 8.35

RL-MRS 0.35 1.76 4.31 9.5

RL 1.97 5.07 9.53 15.68

Table 1. Mean �1-error of all algorithms as a function of

the intensity level.

6. CONCLUSION

In this paper, we presented a sparsity-based fast iterative thresh-

olding deconvolution algorithm that takes account of the pres-

ence of Poisson noise. A careful theoretical characterization

of the algorithm and its solution is provided. The encourag-

ing experimental results clearly confirm the capabilities of our

approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. Deconvolution of Lena. (a) Original, (b) Blurred,

(c) Blurred+noisy, (d) RL, (e) NaiveGauss, (f) AnsGauss,

(g) RL-MRS, (h) Our algorithm.
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