
ACTION RECOGNITION USING SPATIO-TEMPORAL REGULARITY BASED FEATURES

Taylor Goodhart, Pingkun Yan, Mubarak Shah

School of Electrical Engineering & Computer Science,
University of Central Florida

http://www.cs.ucf.edu/˜vision/

ABSTRACT

In this paper, a novel feature for capturing information in a
spatio-temporal volume based on regularity flow is presented
for action recognition. The regularity flow describes the di-
rection of least intensity change within a spatio-temporal vol-
ume. Our feature consists of weighted histograms of the com-
puted regularity flow around selected interest points. We then
apply this new feature to recognizing actions with experi-
ments on known benchmark dataset. A more discriminating
representation of spatio-temporal volume is obtained by us-
ing the feature descriptors with the bag of words model. Ac-
tion recognition is performed by using this new representation
with a trained support vector machine. We show that by uti-
lizing regularity flow based features, recognition can be per-
formed with better performance than the best known features.
Additionally, results suggest that our descriptor captures in-
formation otherwise not harnessed by existing methods.

Index Terms— Feature extraction, video analysis, regular-
ity flow, action recognition.

1. INTRODUCTION

With the ever increasing amount of video information avail-
able, the problem of video content analysis is becoming in-
creasingly important. It is a problem fraught with difficulties
due to motion, however, including changes in perspective,
lighting conditions, and scale. To complicate the issue, the
variability between different actions is generally quite subtle.

Existing action recognition methods can be divided into
two categories: model-based and feature-based. Model-based
approaches generally resort either fitting a predefined struc-
ture - traditionally a human skeleton - to a video volume, or
matching against predefined motion models [1]. These ap-
proaches perform well, but are constrained by the fact that
explicit anthropometric models are required. Feature-based
approaches are inherently more general - examining raw pixel
data - at the expense of higher sensitivity to noise. Existing
feature-based approaches have been designed to detect fea-
tures such as optical flow, spatio-temporal corners [2], 3D
SIFT [3], and high entropy regions [4]. A common trend

Fig. 1. Some examples of typical actions: Bend, Jumping Jack,
Jump, In Place Jump, Run, Side Step, Skip, Walk, One Handed
Wave, Two Handed Wave.

Fig. 2. SPREF vectors computed from the spatio-temporal volume.

among such detectors is that they are generalizations of ex-
isting 2D object recognition techniques. This is a natural ex-
tension, considering that both object recognition and action
recognition face similar problems of occlusion, changes in
perspective, multiple scales, and varying lighting conditions.
Nevertheless, the fundamental difference between spatial do-
main and temporal domain is not fully considered.

Our proposed method addresses the problem of action
recognition using a feature-based approach; specifically,
spatio-temporal regularity based feature (STRF). In our work,
the spatio-temporal regularity is obtained by computing the
spatio-temporal regularity flow (SPREF) [5], which is ex-
tracted by minimizing the energy of a spline curve approxi-
mation of the regularity flow over the entire volume. We also
propose an interest point according to the distribution of the
regularity flow. These feature descriptors are placed into a bag
of words system in order to create a more robust description
of video volumes, which is used in a support vector machine
system in order to perform action recognition.

Our method is novel in that it considers a spatio-temporal
video volume as a homogeneous unit to a far greater degree
than existing methods, such as optical flow. This feature is
suitable for action recognition as movement naturally creates
highly regular patterns within video. Spatio-temporal regu-
larity is also different from the popular SIFT [6] in that it uses
video regularity, versus image gradient, as a source of infor-
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Fig. 3. Flow diagram outlining stages of feature extraction algo-
rithm.

mation. We show that better results can be obtained on the
well known Weizmann action dataset [7] using the proposed
method compared to existing methods based on other features
(see Fig. 1 for example frames from the dataset).

2. SPATIO-TEMPORAL REGULARITY BASED
FEATURE (STRF)

2.1. Spatio-Temporal Regularity Flow (SPREF)

The spatio-temporal regularity flow - henceforth SPREF - is
a 3D vector field describing the direction along which the
intensity I of a video volume changes the least. We approx-
imate the SPREF (F) with a spline curve approximation that
minimizes the energy E defined as,

E(F) =

∫
Ω

∣∣∣∣∂(I � G)(x, y, t)

∂F(x, y, t)

∣∣∣∣
2

dx dy dt (1)

where G is a Gaussian filter. All motion is approximated as
translational motion perpendicular to a propagation direction
[5]. In our case, the propagation is the temporal axis.

The suitable scale of each sub-volume is determined by
splitting the spatio-temporal volume using an oct-tree struc-
ture followed by a merge operation to remove redundant
branches. For efficiency, however, we limit the depth of the
octtree to 5 levels, for a maximum of 85 nodes. In the oct-tree,
each node corresponds to a region of the volume. The child
of a node corresponds to further subdivisions. We calculate
the SPREF for each node and record the error, which is used
as the criterion for further split or merge. An example of the
SPREF is shown in Figure 2. For an in-depth discussion of
the SPREF, we refer the readers to [5].

2.2. Feature Point Selection

In order to classify a spatio-temporal volume, we must ef-
ficiently encode the information provided by the regularity

flow. Great success has been achieved by representing a
spatio-temporal volume as a collection of interest points. We
utilize this approach, basing our selection method on the en-
tropy of angle histograms. Inspired by the work of Kadir and
Brady [8], we locate interest points within a spatio-temporal
volume by computing the entropy at an interest point and
scale by examining a window about the point at each level
of a scale pyramid. In practice, we quantize the SPREF vec-
tor angles into 8 bins and construct a histogram weighted by
magnitude for a 16× 16× 16 window. The entropy E of the
interest point is calculated as

E(p, s) = −

8∑
a=1

hs(p, a) · log2(hs(p, a)) (2)

where hs(p, a) is the height of the ath bin in the histogram
for point p and s is the scale. We refer to the scalar field
containing the entropy for each point in the spatio-temporal
volume the entropy map. The entropy map has the physical
interpretation of a region of highly regular movement; this is
expected, as these are the regions with the highest degree of
motion regularity. Regions of other types of movement - such
as rotational movement - elicit a response, albeit not as strong.
In contrast, corner-based approaches tend to generate interest
points at joints as well as points of abrupt change in direction,
such as the zenith of the path of a bouncing ball.

By thresholding this entropy map, we obtain a region of
interest around points of high regularity. Within this region,
interest points are selected by random. Traditionally, interest
point selection methods search for extrema in a feature space.
Our approach is novel in our use of interest points randomly
selected within a thresholded region. This allows us to ob-
tain a more representative set of interest points than would be
possible by simply randomly selecting throughout the entire
spatio-temporal volume. This approach also allows us to pa-
rameterize the number interest points selected, versus being
limited by the number of extrema that may or may not exist.

2.3. Scale Selection

As the actors in a video may occur at different scales, repre-
sentations of the SPREF need to be constructed at different
scales. To achieve this, we separate the SPREF vector field
of the original spatio-temporal volume into its component X
and Y parts, resulting in two scalar fields. We then construct a
scale pyramid by convolving these scalar fields with a Gaus-
sian and down-sampling. The Gaussian acts as a low-pass
filter in frequency space, where the low frequency compo-
nents of the scalar fields correspond to information at larger
scales. With an appropriate choice of Gaussian parameters,
the new scalar fields will have half the bandwidth of the orig-
inal representation. According to the Nyquist Shannon sam-
pling theorem, we can sample the field at half the frequency
and still retain all information. In practice this amounts to
down-sampling the scalar fields. The scalar fields are then re-
combined to form a representation of the SPREF vector field
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at a larger scale. There is the added computational benefit in
that the new representation is now 1/4 the size of the original,
which results in faster processing.

Note that no scaling is performed in the temporal dimen-
sion. Temporal scaling has a different physical interpreta-
tion than spacial scaling; specifically it corresponds to faster
movement or a higher frame rate. In typical applications, the
framerate and speed of actions in question are known a priori.
As such, it is not necessary to perform scale selection in the
temporal direction.

We compute an entropy map for each tier in the scale pyra-
mid, and take the maximum at each point to create an entropy
map representative of all scales. In practice this merging re-
sults in the entropy map appearing as a ‘haze’ or ‘aura’ about
regions of high entropy. The gradual change in the intensity
of the entropy map is a desirable property, as it affords us
much control over the size of the region of interest generated
by thresholding the entropy map.

2.4. Feature Descriptor

Having obtained interest points in a spatio-temporal volume,
the next stage is the feature descriptor computation. Inspired
by the success of histograms of gradients such as Lowe’s
SIFT descriptor [6], we propose a 16×16×16 window about
each interest point at the optimal scale. To place more empha-
sis on SPREF vectors closer to the interest point, we convolve
the region with a Gaussian. The region thus has a spherical
shape. In order to achieve rotation invariance, we compute
the dominant SPREF vector angles for the region, and rotate
the region accordingly. To protect against changes in light in-
tensity, we normalize the magnitude of the SPREF vectors in
the region. Finally we divide the region into 4 × 4 × 4 sub-
regions, and construct an angle histogram for each, weighted
by the vector magnitudes. This results in a 512 dimensional
feature vector for each interest point composed by 64 subre-
gions with 8 bins. An example of this can be seen in figure
4.

This approach is similar to that of the SIFT and 3D SIFT,
but different in three regards. First, vectors are derived from
the regularity flow of a spatio-temporal volume, in contrast
with the gradient. In a sense, our approach is mutually exclu-
sive with the 3D SIFT. Second, the region about an interest
point is rotated by the dominant SPREF angle for each frame,
as opposed to the dominant gradient. Finally, only one rota-
tion is performed in the XY plane, as opposed to the 3D SIFT,
which performs two rotations. This is sufficient, because ro-
tation in the temporal dimension has a different interpretation
than that of the spatial dimensions.

2.5. Action Recognition

One observation is that our feature descriptor is not particu-
larity well suited for a support vector machine (SVM) clas-
sifier due to its high dimensionality. Moreover, noise may

Fig. 4. An example of the region about an interest point. SPREF
vectors are marked in red. Subregions are divided by the blue grid.
The rings delineate the spherical shape of the region of interest. The
descriptor we use spans across 16 slices at the optimal scale.

create interest points that do not contain meaningful informa-
tion, skewing results. Thus in order to recognize an action in
a video, we do not use the feature vector descriptors directly
but rather - as a preprocessing step - we utilize the Bag of
Words approach to represent actions [9, 10]. First, the fea-
ture descriptors for an entire dataset are clustered according
to a hierarchical K-means clustering algorithm. The resulting
cluster centers then become our Words; the set of all words
our Vocabulary. We then associate every feature descriptor in
a video to the closest word. A video is now represented as a
set of words. We then generate a word frequency histogram,
called a Signature, for each video. While this frequency his-
togram could be used itself as a feature for our SVM system,
there may be instances where particular words have a high
co-occurrence rate, and thus contain similar information con-
tent. By merging these words into a new unit, we can reduce
the dimensionality of our word frequency histogram - now
a grouping frequency histogram - while maintaining all rel-
evant information and as such obtain better results. In sum,
by utilizing hierarchical K-means clustering in a bag of words
framework, we are able to refine our original feature descrip-
tors into a more representative descriptor.

To test and train, we utilize the ‘leave one out’ strategy.
This is done by selecting a video from the dataset and leaving
it out of the training system. The remaining videos in the
same action class are used as positive examples, and all other
videos used as negative examples. To calculate an average,
we iteratively leave out each video. In this manner, we are
able to protect against biases that may arise from using any
single video.

3. RESULTS

We conducted our tests using the Weizmann action dataset
[7], which has become a standard test dataset for similar
action recognition methods. We compare our results to
Niebles’s gradient magnitude based method [10] and Scov-
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Table 1. Results of action recognition methods using differ-
ent features for Irani dataset.

Gradient Magnitude[10] 72.8%
3D SIFT[3] 82.6%
STRF 83.7%

Fig. 5. Confusion Matrix. Left axis is actual action. Top axis is
predicted action.

anner’s 3D-SIFT based method [3]. We utilize the same clas-
sification framework as the 3D-SIFT based method, and thus
our results wholly reflect the difference between the feature
descriptors. The dataset consists of ten action classes such
as jumping, walking, waving, and skipping, with each action
being performed by nine actors, except for ‘run’ and ‘skip’,
which have ten. In total, the dataset contains 92 videos.
The results demonstrate that our performance is better than
other known methods, as shown in table 1. Significantly,
our approach perfectly recognize the actions of ‘Walk1’ and
‘Walk2’, in contrast with all other approaches. Fig. 5 shows
the confusion matrix of the results.

After exploring the parameter space, we found that by uti-
lizing 600 sample points were spatio-temporal volume, we
obtained optimal results. For the sequences in which the actor
crosses the entire field of view - ‘jump’, ‘run’, ‘side’, ‘skip’,
and ‘walk’ - interest points at the next highest scale were more
common, corresponding to a window size of 32 × 32 × 16
pixels. For the hierarchical K-means grouping, the number
of clusters k is set as 1000. This is a reasonable value, as it
will generate words corresponding to an average of 55.2 fea-
ture descriptors. The initial positions of the cluster centers are
chosen at random. This introduces a marginal degree of vari-
ability into the algorithm. Our best attained precision, shown
in table 1, was 83.7% and the average precision was 79.4%.

Overall the results are quite promising. The majority of
the action classes were correctly classified. In particular,
the ‘Bend’, ‘Pjump’, ‘Walk’, ‘Wave1’, ‘Wave2’ actions were
classified with 100% accuracy, as shown by figure 5. These
actions were similar in that the actor was planted in one po-
sition, or moving relatively slowly. After examining the in-
stances where the STRF did not perform as well, we discov-
ered that this was due to a mixture of scaling and entropy-

based thresholding. The misclassified actions were those in
which the actor crosses the entire field of view. In particu-
lar, the majority of the voxels within the volume are all mov-
ing in a constant translational fashion in these cases. This
type of motion generates a high response in our feature de-
scriptor, due to the large degree of regularity. The largest re-
sponse occurred at larger scales, which is to be expected, as
the larger scales encompass more of the actor and less noise.
The distinguishing aspects of each motion, however, occur
at the smaller scales with lower entropy that were not se-
lected. Colloquially, the translational movement of the actor
‘drowned out’ the differentiating aspects of the actions. This
phenomenon did not occur in the correctly classified actions,
as the scale of highest entropy and the scale of the differenti-
ating aspects were the same.

4. CONCLUSION

In this paper we have proposed a novel new feature for ac-
tion recognition: the spatio-temporal regularity flow (STRF).
We have compared our results to those of others on a known
database, and shown results that perform as well as the best
feature-based systems. More importantly, our feature was
able to classify certain actions better than other methods, sug-
gesting that our feature encodes unique information. We hope
to show in future works that the STRF can be used in con-
junction with alternative formulations of the STRF to obtain
improved results.
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