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ABSTRACT 
 
The two major difficulties associated with practical real 
time multi-target tracking are accuracy and speed. A new 
technique is proposed for multi-target tracking based on 
multi-modal particle filter with fast tracking capability and 
improved accuracy. The speed in tracking is achieved by a 
KLD sampling stage while the accuracy is improved by an 
additional stage that uses radial basis functions (RBF) for 
interpolating the sparse particles. Test results of the 
proposed multi-target tracking approach on both synthetic 
and real video data demonstrate the improved performance. 
 
Index Terms— Mixture Particle Filter, Kullback-Leibler 
Divergence, KLD Sampling, Radial Basis Functions. 
 

1. INTRODUCTION 
 
Accurate and fast multi-target tracking is amongst the 
fundamental challenges in visual computing. Although 
particle filters [1] are very successful and accurate in 
tracking a wide range of challenging non-linear and non-
Gaussian models, they are poor in consistently maintaining 
multiple modes in the target distributions that arises due to 
presence of multiple objects. To address this issue of 
maintaining the multi-modality of the target distribution, a 
technique called mixture particle filter [2] was proposed 
which models the target distribution as a non-parametric 
mixture model by distinguishing each target distribution and 
evolving each of them individually.  
     The number of particles used to estimate the state is a 
deciding factor in the accuracy and speed of the particle 
filter. The particle filter used in tracking the dynamic states 
become numerically intensive as the number of particles 
increases, although in general the accuracy of estimation 
increases with the number of particles used. Issue of 
improving accuracy of estimate without increasing number 
of particles needs to be addressed. Finding a solution to this 
problem becomes more imminent especially in the case of 
mixture particle filter where multiple modes of the density 
due to the underlying targets would naturally demand a 
larger number of particles and hence lending mixture 
particle filter computationally intensive and sluggish. 

     This paper introduces a strategy by adopting Kullback-
Leibler divergence (KLD) sampling [5, 6] which makes the 
mixture particle filter less intensive. Further, the accuracy is 
preserved or improved through re-sampling the particles 
based on radial basis functions (RBF) [4]. Synthetic data 
and real video experiments are presented to demonstrate the 
improved performance of the proposed technique. 
     The basic idea of the KLD based mixture particle filter is 
presented in Section 2. Section 3 explains accuracy 
improvement of the estimate with radial basis function 
support. Then the proposed tracking approach is given in 
Section 4. Results for synthetic data and real video data are 
presented in Section 5. Section 6 concludes the paper. 
 

2. KLD BASED MIXTURE PARTICLE FILTER 
 
The basic idea behind the KLD based mixture particle filter 
is invoking KLD sampling to adapt the cardinality of the 
particle set during tracking.  
     In the mixture particle filter, individual modes in the 
posterior distribution representing multiple targets are 
clustered out using standard clustering techniques. At every 
time instant the overall prediction distribution is obtained by 
computing prediction distribution for each of the 
components individually. Overall weight set is obtained by 
normalizing over all weight sets of individual components.  
     To capture multi-modality the posterior is formulated as 
an M-component mixture model as follows: 
                                                           (1) 
                                                 
where                              
                                                                              (2) 
 
 
                                                                                           (3) 
 
To improve the speed performance by regulating the 
number of particles in each time instant, KLD sampling 
[5,6] is used so that the number of particles is made adaptive 
such that the divergence between real posterior and 
estimated posterior is bounded by a specified limit. The 
particle subsets associated with each of the individual 
targets are subjected to KLD sampling. This enhances the 
speed performance of mixture particle filter as only minimal 
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and optimum number of particles will be kept to ensure 
desired accuracy. 
 

3. MEAN ESTIMATION USING RADIAL BASIS 
FUNCTIONS 

 
A typical particle filter provides a way of performing 
recursive Bayesian estimation using a set of particles 
associated with the underlying system. The state set and its 
corresponding weight set can be used to estimate the mean 
state. In the proposed approach, at this stage a new set of 
states within the range of existing state set of the particle set 
is generated from the same proposal distribution used in 
particle filter. Also, new states are chosen such that they are 
concentrated around particles with large weights. The 
cardinality of new state set is larger than the existing set. 
The corresponding weights associated with the new state set 
including the old state set can be obtained by interpolation 
of existing particle set using radial basis functions [4] with 
an appropriate basis function and smoothness. The 
underlying posterior distribution s(x) is estimated from 
particle weights W at distinct states given by particle states 
X of the existing particle set.  
     Suppose g(x) is a real valued function, we try to 
approximate g(x) by s(x) given values of g = {g1, g2,…, gN} 
at discrete X = {x1, x2,…, xN}. The underlying function s(x) 
is formulated as a radial basis function of the form, 
                                       (4) 
 
where p is a polynomial of degree at most k,       is a real-
valued weight, |.| is the Euclidean norm,    is an appropriate 
basis function. Given the interpolant values g the weights     
and the coefficients that give p in terms of the basis are 
found such that s(x) satisfies, 
            (5) 
This gives a closed form representation of underlying 
function s(x). In a similar fashion we try to formulate the 
underlying posterior density given the weights and the 
states, forming the particle set, representing g and X 
respectively by s(x). Now from the closed form 
representation of the posterior density s(x), weights 
associated with the new state set, are generated as discussed 
earlier, is obtained. Estimate of the mean state using the 
new, larger particle set is better than that estimated with the 
original particle set.      
     This can be shown with an example of a simple problem 
of integration. Let P be the probability measure defined 
over variable space x. We are interested in estimating 
expectation of a function of interest f over x with respect to 
the probability density P, 
                           (6) 
Since the integral cannot be evaluated analytically, Monte 
Carlo methods are used. An estimate is obtained by 
generating N samples according to P. The empirical mean of 
f is given as, 

Now a new set of variable samples is generated, distributed 
according to P, with the same range as the existing set. The 
cardinality of the new sample set along with the existing set 
is M>>N. RBF interpolation is used on f to obtain the 
underlying function s(x) of f from which the function values 
are calculated for the new state set. The new empirical mean 
of f obtained by using the values of the function f for the 
new sample set along with that of the old is obtained as,  
            (8) 
 
 It can be show that,  
 
           (9) 
Bounds [7, 8] exits such that,           
          (10) 
 
Similarly,          (11) 
                     
The bounds are given by,         
 
 
 
          (12) 
 
 
   
Since M>>N we have, 
 
          (13) 
Then we have, 
 
                                                                           (14) 
Thus, consistently the probability that the difference 
between true mean and the mean estimated with N particles 
exceeds a bound, is far greater than the probability that the 
difference between true mean and the mean estimated with 
M particles, obtained by RBF interpolation, exceeds the 
same bound. From this we can infer that the mean estimated 
by RBF interpolation is more accurate.     
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Fig. 1. Weights vs. states plot of Initial Particle set (left) and 

overall Particle set after RBF interpolation. 
     An illustration of RBF interpolation is shown in Fig 1. 
The plot on left in Fig 1. shows the weights vs. states plot 
with N elements of dual-object scenario and that on right 
shows weights vs. states plot with M>>N elements obtained 
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by RBF interpolation with appropriate basis function and 
smoothness from a simulation run of regular particle filter.  
 
 4. PROPOSED MULTI-TARGET TRACKING                  
           
Summarizing the ideas put forth in Sections 2 and 3, we 
propose a multi-tracking approach using Mixture Particle 
filter which incorporates KLD sampling and RBF 
interpolation technique. The proposed KLD mixture particle 
filter with RBF support is presented in Table 1, with steps 
explained in detail in the following paragraphs. 
     Step 1: KLD Sampling: The state space is downsized to 
the calculated cardinality     and samples are generated from 
suitably chosen proposal distribution q which depends on 
the previous state and present measurement. 
Table 1. Proposed KLD-MPF with RBF support algorithm. 
  Inputs:                                                  , observation tz ,      
   bounds ,e , minimum number of samples  
     
   do 
      1. Sampling the states         
      2. Re-weighting using likelihood function 
        
          a. 
     
 
        b. 
 
      3. Update particle size n  using KLD transformation 

          if           falls into empty bin b then 
              1k k  
               b = mark bin as non-empty 
               if                  then 

     
                
              end if 
          end if 
      1n n  
   while (             and                   ) 
   4. Normalize the weights and form the state-space 
                           and tx  
 
   5. Estimation using radial basis function interpolation 

       RBF interpolated particle set , | 1, ...,
i i

S w i Mt t tx  

                                    where M>>N and        normalized   
   6. Formulate the particle set 

   
   return  
  
    Step 2: Re-weighting: The particle weights    and the 
mixture component weights                            are calculated 
using steps 2a. and 2b. The likelihood                 is 
calculated using a suitable likelihood function       
     Step 3: Particle Set Cardinality Calculation: The number 
of particles used to estimate the state is a deciding factor in 

the accuracy and speed of the particle filter. Relation 
between the number of particles used and the accuracy of 
the estimates is determined by a metric called Kullback-
Leibler divergence which measures how best the MC 
estimate of the posterior density can match the true 
posterior density. The smaller the divergence value, the 
better is the match. Thus, the problem of achieving an 
optimal tradeoff between accuracy and speed reduces to the 
problem of determining number of particles at each 
iteration of particle filter such that, with a probability the 
error between true posterior and posterior estimate is 
minimum. Suppose that we have two distributions p and q, 
KLD [5] is defined as, 
 

           (15) 
KLD is always positive and zero if the distributions are 
identical. Equation (16) gives the number of particles n that 
guarantees with probability 1-  that KLD is less than e.  
 
 

           (16) 
where z1-   is the upper 1-  quantile of the standard normal 
distribution and k is the number of bins of the MC posterior 
density estimate with support.  
     Step 4: The weights of the particles are then normalized. 
     Step 5: RBF interpolation of the particle set according to 
Section 3. 
     Step 6: The particle set is formulated. Mean state can be 
computed from this particle set with size M>>N using,
                                                            (17)  
Only initial N samples prior to RBF interpolation are 
propagated in to the next iteration of mixture particle filter. 

  
5. RESULTS 

 
The proposed approach is systematically evaluated and 
compared using simulated data. The performance is also 
evaluated on real video sequences. 
     Consider a point moving in 1-D. A true path of the point 
is generated based on a non-linear motion model, and non-
Gaussian noise is then added to the actual path to simulate a 
noisy measurement of the actual path. Then we evaluate our 
KLD-MPF with RBF support algorithm and compare 
against regular MPF [3] and KLD-MPF to track the true 
path using the noisy path as measurement for two targets. 
Fig. 2. illustrates this comparison. The speed and accuracy 
performance from this comparison is tabulated in Table 2 
which shows that KLD-MPF with RBF support outperforms 
regular MPF with sufficient accuracy and speed 
performance.  
     Next, we apply KLD-MPF with RBF support on real 
video sequence. This is intended to verify the claim of gain 
in speed of tracking while maintaining accuracy of multiple 
tracked objects. 
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Fig. 3. KLD-MPF with RBF support tracking on dual-object video (top) & multi-object hockey sequence (bottom). 
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Fig. 2. Left: KLD-MPF with RBF support; Right: MPF. 

Table 2. Time elapsed and MSE accuracy with KLD-MPF 
with RBF support, KLD-MPF and regular MPF. 

KLD-MPF with RBF KLD-MPF Regular MPF 

Time 
(secs) 

Track1 
MSE  
x10-4 

Track2 
MSE 
x10-4 

Time 
(secs) 

Track1 
MSE 
x10-4 

Track2 
MSE 
x10-4 

Time 
(secs) 

Track1
MSE 
x10-4 

Track2
MSE 
x10-4 

5.482 17 30 2.765 25 33 30.05 26 37 
5.125 7.792 17 2.735 17 29 29.66 6.715 14 
4.640 9 40 2.703 16 64 30.09 11 40 
5.453 18 21 2.703 21 27 29.83 19 25 
5.531 19 20 2.734 23 41 29.87 21 21 
4.619 29 18 2.781 49 20 29.97 27 18 
5.720 26 12 2.750 28 12 29.53 27 14 

The performance of the algorithm on real video shows that 
with an initial particle size of 2000 per object and 8 objects, 
KLD-MPF with RBF support algorithm is consistently 5 
times faster than regular MPF without loss in accuracy as 
seen from Fig. 3. The elapsed time performance over 24 
frame (1 sec) sequence is in Table 3. Tracking runs on real 
hockey video and a dual-object surveillance video with is 
shown in Fig. 3. Experiments were performed on Matlab on 
a non-dedicated 1.7GHz Pentium processor with 1GB 
RAM.      
Table 3. Time elapsed for KLD-MPF with RBF support and 

regular MPF on multi-object hockey sequence. 
       KLD-MPF RBF         Regular MPF  

Time (secs) Time (secs) Speed Improvement 
49.8270 258.6860 5.1968 
49.7170 260.9200 5.2481 
50.0640 257.0480 5.1343 
52.0470 258.1420 5.0569 

      
   
 
 
          
 
 
 
 
 
     
 
 
 

6. CONCLUSIONS 
 
In conclusion, along with a tracking speed improvement the 
KLD-MPF with RBF support outperforms regular MPF 
with preserved or improved accuracy promising an efficient 
real time tracking system. KLD sampling is introduced in to 
the mixture particle filter which improves speed 
performance tremendously. Further, radial basis function 
tweak is used to improve the accuracy of the estimate 
without any overhead in the propagation iterations of 
mixture particle filter. Since the number of objects tracked 
is many, the KLD-MPF with RBF support provides a 
practical tracking solution with very good accuracy with 
limited number of particles per object. 
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