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ABSTRACT

In order to achieve both fast tracking and accurate object extraction,
we present in this paper an original real-time active contour method,
incorporating different feature maps into a common and homoge-
neous framework, defined by the multi-feature vector flow (MFVF).
The MFVF active contour approach does not require any target prior
model, and enables precise tracking of mobile deformable objects.
The use of the MFVF, resulting from multiple selected features,
brings robustness into the system towards complex situations, while
our computationally efficient implementation of the MFVF scheme
reaches the required speed range for tracking process. The proposed
method has been successfully tested on real-world video sequences.

Index Terms— Video Real-Time Tracking, Active Contours,
Blobs, Gradient Vector Flow, Feature Combination

1. INTRODUCTION

Many computer vision applications like video-surveillance or human-
machine interfaces, necessitate tracking and object extraction as cor-
ner stones. Hence, robust, accurate and real-time tracking, in dy-
namic natural situations, still remains a challenge.

Usual approaches using template matching [1], region growing
[2] or target description modeling [3], localize the target-object only
by centroid. Moreover, they mostly encounter drawbacks like the
lack of flexibility in face of highly changing target shape and ap-
pearance. Recent studies tend then to improve their tracking per-
formances by combining several features, as human vision system
is processing itself [4], in a sequential [1] or hierarchical way [2].
Nevertheless, these techniques are usually restricted to some spe-
cific feature choices and often become time-consuming, therefore,
not well adapted to online tracking.

In our work, we have developed a parallel feature fusion scheme,
that is computationally effective. The new method integrates, thus
at the same level, an extensive number of different feature maps,
creating a multi-feature vector flow (MFVF) field. Each feature is
chosen depending on the focused application and has an automati-
cally optimized impact on the global result. The MFVF coupled to
a snake formalism [5] does not need any prior knowledge on the tar-
get appearance, and yields to an efficient real-time tracking system,
providing the entire target contour.

The paper is organized as follows. In Section 2, the proposed
multi-feature vector flow (MFVF) is described. In Section 3, the
MFVF is applied to a real-time active contour method, defining an
innovative robust tracking framework. The approach performances
are presented on video-surveillance sequences, in Section 4. Finally,
conclusions are given in Section 5.
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2. MULTI-FEATURE VECTOR FLOW (MFVF)

The Multi-Feature Vector Flow (MFVF) defines a new active con-
tour external force ΞΞΞ based not only on the image intensity gradient
[6], [7], [8] but on the gradient of any feature map.

In our approach, at first, feature maps have to be generated from
the selected features. Then, the feature vector flows are computed,
in parallel, using an isotropic diffusion process, like described in
Section 2.1. Finally, the MFVF is obtained by a fusion of the feature
vector flow fields, exposed in Section 2.2.

2.1. Feature Vector Flow Field

The MFVF field ΞΞΞ(x, y) is defined as a combination of NF feature
vector fields ΞΞΞj(x, y) = [ξuj(x, y), ξvj(x, y)]. Each vector ΞΞΞj min-
imizes the following functionality εj

εj =

ZZ
μj(ξ

2
uxj + ξ2

uyj + ξ2
vxj + ξ2

vyj)

+ (f2
xj + f2

yj)((ξuj − fxj)
2 + (ξvj − fyj)

2) dxdy

(1)

where the diffusion parameter μj could be set according to the
amount of image noise and fj is a feature map computed from the
corresponding jth adapted feature.

Based on these formulations, the jth feature vector flow field ΞΞΞj

can be found by solving the Euler equations

μj∇2ξuj − (ξuj − fxj)(f
2
xj + f2

yj) = 0 (2)

μj∇2ξvj − (ξvj − fyj)(f
2
xj + f2

yj) = 0 (3)

where∇2 is the Laplacian operator.

Considering ξuj and ξvj as functions of time, leads to Equations
4 and 5

ξujt(x, y, t) =μj∇2ξuj(x, y, t)

− [ξuj(x, y, t)− fxj(x, y)].[fxj(x, y)2 + fyj(x, y)2]

(4)

ξvjt(x, y, t) =μj∇2ξvj(x, y, t)

− [ξvj(x, y, t)− fyj(x, y)].[fxj(x, y)2 + fyj(x, y)2].

(5)
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The Equations 4 and 5 also known as generalized diffusion equa-
tions, are then decoupled. Hence, these scalar partial differential
equations in ξuj and ξvj , can be computed in a separate way. The
solution of the jth feature vector flow ΞΞΞj is therefore obtained after
discretization and iteration of Equations 4 and 5.

2.2. Feature Vector Flow Fusion

In order to treat the different types of low and high-level features in
a homogeneous framework, and to process in a computationally effi-
cient way, the multi-feature vector flow MFVF fusion is formalized
by taking a linear model given by a weighted sum:

ΞΞΞ(x, y) =

NFX
j=1

wj ΞΞΞj(x, y). (6)

The weight values wj are depending on the ability of each fea-
ture to localize accurately the object-target in a given image. In this
sense, we first introduce, in Section 2.2.1, a new criterion called Seg-
mentation Method Attenuation (SMA) to evaluate the segmentation
quality resulting of each feature, in a useful way for our approach.
Then, we describe, in Section 2.2.2, our weight computation algo-
rithm.

2.2.1. Segmentation Method Attenuation (SMA)

The segmentation method attenuation (SMA) is a new criterion pro-
viding the evaluation of shape similarity and object location concor-
dance between the reference mask area and the extracted one.

Considering a reference image Ir , we have defined this shape
similarity criterion as the attenuation introduced by the object ex-
traction method, expressed in dB,

SMA(Mr, R) = 10 log

P
(xi,yi)∈Ir

(Mr(xi, yi))
2

P
(xi,yi)∈Ir

(R(xi, yi))2
(7)

with R, the overlapped region defined as the intersection of the
reference mask Mr(xi, yi) and the extracted mask Me(xi, yi),

∀(xi, yi) ∈ Ir,

R(xi, yi) =

(
1 if Mr(xi, yi) + Me(xi, yi) = 2,

0 otherwise.

(8)

The masks M are simply defined as

∀(xi, yi) ∈ I,

M(xi, yi) =

(
1 if (xi, yi) ∈ video object,

0 if (xi, yi) ∈ background.

(9)

In the best case, the SMA(Mr, R) is equal to zero when the ex-
tracted object region is corresponding to the reference one, consid-
ering its area location. The worst situation occurs when there is no
overlap between the extracted object and the reference one, leading
to a total attenuation, therefore an infinite SMA value. In between,
the SMA value is varying, related to the match between the refer-
ence mask and the extracted one. Thereby, the SMA provides, in the
sense of [9] recommendations, a meaningful measure that could be
rapidly evaluated and applied to score a large set of feature maps.

2.2.2. Weight Computation

The feature weights wj are computed in two phases. Firstly, the
weight are fixed to an equal value, mentioned in Equation 10. The
Equation 6 is solved for these values, providing an initial MFVF.
Based on these results, a reference mask Mr is defined, by the mean
of a MFVF active contour as described in Section 3.2. Secondly,
respecting the condition

P
j wj = 1, for j = 1...NF , the weight

values are computed thanks to Equations 11 and 12. The SMAj is
the segmentation method attenuation (see Section 2.2.1), computed
for the jth extracted feature which defines the corresponding Me.

• Initialization:

wj0 =
1

NF
j = 1...NF (10)

• Update:

wj =
gj

NFP
j=1

gj

(11)

The coefficient gj is defined as follows,

if

NFX
j=1

SMAj �= 0,

gj =

(
(SMA)−1

j if SMAj �= 0

k ·max{gj′ �=j} if SMAj = 0, with k ∈ Z
+
0

otherwise, gj =
1

NF
.

(12)

Finally, the feature weight values found in Equation 11, are re-
placed into Equation 6, to compute the resulting MFVF field.

The proposed multi-feature vector flow fusion scheme has the
main advantage to offer the ability to directly control the impact of
each feature on segmentation accuracy as well as on tracking quality.
Moreover, our framework enables the grouping of different nature
image-information, like edge or color, in one vectorial field (MFVF),
that could be used as an external force in the active contour mecha-
nism, described in Section 3.

3. MFVF ACTIVE CONTOUR

We present in this section a fast and robust active contour method
based on the MFVF. Our approach leads to a generic multi-feature
tracker and relies on two major conception steps. At first, the selec-
tion of the features, in order to generate the MFVF, is explained in
Section 3.1. Then, the model implementation of the active contour
itself, converging thanks to the MFVF external force, is described in
Section 3.2. Furthermore, all the system is designed to be compati-
ble with real-time tracking as shown in Section 4.

3.1. Selected Features

In this paper, two different features are taken to illustrate our MFVF
mechanism : the edges and the blobs. The choice is based on their
complementary structural properties as well as their different ex-
tracted content. Indeed, the edges define the object border shape
and are computed thanks to image intensity gradient as mentioned
in Section 3.1.1. On the other hand, the blobs provide both the re-
gion of interest containing the target-object, and information on its
appearance, by background subtraction, described in Section 3.1.2.
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(a) (b) (c)

Fig. 1. MFVF fields performances on frames of a video sequence (first row : frame 849; second row : frame 2316), (a) ΞΞΞ1 based on edges,
(b) ΞΞΞ2 based on a blob, (c) MFVF resulting field ΞΞΞ.

3.1.1. Edges

Let I(x, y) : [0, Lx] × [0, Ly] −→ R
+ be a given image and Lx,

Ly , its spatial dimensions. The edges are defined to have strong
magnitudes at the boundaries of the objects and are identified, in our
case, by the location of zero-crossings of second order derivative
operations in the image I(x, y). The edge map f1 is thus estimated
by convolving the image I with the Laplacian of the Gaussian, also
known as LoG operator,

f1(x, y) = |∇(Gσ(x, y) ∗ I(x, y)|2 (13)

where Gσ is a two-dimensional Gaussian function with standard
deviation σ.

The feature vector flow field ΞΞΞ1(x, y), shown in Figure 1 (a), is
calculated by incorporating Equation 13 into Section 2.

3.1.2. Blobs

The blobs are defined by labeled connected regions, using back-
ground subtraction. This technique consists in computing the dif-
ference between the current image I(x, y) and a background model,
and afterwards, in extracting the foreground.

We adopt the Running Gaussian Average for modeling the back-
ground, characterized by the mean μb and variance σ2

b , since it is a
method well-suited for real-time tracking [10].

The foreground is then determined by Equation 14.

F2(x, y) =

(
1 if |I(x, y)− μb| > n · σb, with n ∈ N0,

0 otherwise.
(14)

Finally, the morphological operations are applied to the extracted
foreground F2, in order to exploit the existing information on the
neighboring pixels,

f2(x, y) = Morph(F2(x, y)) (15)

where the blob map f2 is thus adapted to our feature vector flow
process. This leads to the feature vector flow field ΞΞΞ2(x, y), illus-
trated in Figure 1 (b).

3.2. MFVF Snake

For computational efficiency, we model the MFVF active contour
with a parametric planar curve CCC(s) : [0, 1] −→ R

2, also called snake
[5], represented by a B-Spline formalism.

The active contour evolution, from an initial position towards
desired image features, is driven by the dynamic Equation 16, that is
depending on internal force, described by contour mechanical prop-
erties (α: elasticity, β: rigidity), and on external force ΞΞΞ resulting
from the image selected features.

CCCt(s, t) = α CCCss(s, t)− β CCCssss(s, t) + ΞΞΞ (16)
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(a) Frame 849 (left), zoom on the target (right) (b) Frame 2316 (left), zoom on the target (right)

Fig. 2. MFVF Tracking results on video-surveillance sequence of 2400 frames.

The MFVF external force ΞΞΞ owns the ability of a a large capture
range and bi-directional convergence. Its additional capabilities are
related to the extracted feature properties.

Therefore, the Equation 16 defines a general multi-feature active
contour framework, enabling the use of an extendable number of
different object shape and appearance characteristics.

4. TRACKING RESULTS

The presented MFVF active contour approach has been validated on
real-world video-surveillance sequences, coming from the CAVIAR
standard dataset:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Our method implementation allows us to achieve accurate and
real-time tracking performances, as shown in Figure 2. Indeed, the
fast B-Spline formalism is coupled with an effective computation
of the MFVF field, using the principle of [8]. Moreover, the feature
maps themselves are efficiently extracted as explained in Section 3.1.
The contour initialization, at each frame, is automatically done by
means of an enhanced bounding box, centered on the detected blob
in the current frame.

The robustness of the MFVF active contour system is provided
by the complementary properties of the selected features, whatever
the extractor precision. Thus, compare to the fields built only on one
feature like illustrated in Figure 1 (a) and (b), the MFVF field owns
a more pertinent content in term of vectorial information and con-
ducts to more accurate field results as shown in Figure 1 (c). Hence,
the MFVF mechanism property allows the tracker to be robust even
in complex situations, like real-world background cluttered with dis-
turbing patterns and similar distracting objects (see Figure 2).

5. CONCLUSIONS AND PERSPECTIVES

This paper presents a new multi-feature vector flow (MFVF) field,
enabling an efficient combination of various types of features in a
homogeneous way. As shown in this work, the use of the proposed
MFVF into the active contour approach, leads to a real-time robust
generic framework that is well-suited for accurate tracking of mobile
deformable objects in video sequences.
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