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ABSTRACT 

 
The huge amount of visual information continuously 
received by an observer cannot be wholly analyzed by the 
brain. In order to interact efficiently with the environment, 
an observer has to select region of interests in the visual 
scene. Only the regions of interest will be processed in 
details by cortical structures. 

This paper aims at introducing a selective attention 
model able to predict the location of visual attractors in 
natural scenes. The underlying idea is to extract and 
combine, in a competitive process, early visual features such 
as color and spatial arrangements to construct a saliency map 
coding interest areas in correlation with human visual 
behavior. The purpose is to effectively locate which region 
of a scene would attract the gaze of an observer and then 
where computational resources should be directed for a 
selective image processing. 
 

Index Terms— Visual system, Image processing, 
Visual attention, Eye tracking, Salient regions 
 

1. INTRODUCTION 
 
With visual attention mechanisms that select parts of the 
scene to be foveated and processed with high resolution, an 
observer can focus his attention only on local regions of 
interest [12, 15]. In other words, visual attention mecha-
nisms allow to direct and to concentrate processing 
resources only on important information. 

The selection of regions of interest is driven both by 
neurological and cognitive resources [7, 9, 16]. Neurological 
resources refer to bottom-up (stimuli-based) information 
when cognitive resources refer to top-down (task-dependent) 
cues. Bottom-up information is controlled by low-level 
image features that stimulate achromatic and chromatic 
parallel pathways of the human visual system. Top-down 
cues are controlled by high-level cognitive strategies largely 
influenced by memory and task-oriented constraints. 

During the last decade, knowledge in visual attention 
has been exploited in computer vision for selective image 
processing. Different biologically plausible models of 
attention were introduced to identify local visual attractors 
over the entire scene [1, 3, 8]. Local visual attractors are 

commonly extracted by quantifying signal properties such as 
intensity variations or contour orientation. 

Models of visual attention would be useful in many 
fields of computer vision. For instance, the quality of image 
parts with high saliency could be preserved during a 
compression process or could be enhanced when displayed. 
The main underlying idea is that a given processing strategy 
could be efficiently adapted to the characteristics of each 
input image. 

In this paper, we propose a bottom-up approach for 
modeling visual attention. The proposed approach is 
designed to detect regions of interest in images that are the 
most attractive for observers. These attended regions are 
directly given by a saliency map. The salience of every 
scene location is computed at multiple spatial scales for 
chromatic and achromatic variations. Different from the 
previous methods, our computational model of attention is 
consistent with neural mechanisms of the human visual 
system. Several important physiological features such as the 
relative ratio of photoreceptors, the normalization 
mechanisms of the parallel visual channels or the cell 
sensitivity in terms of frequency bands are considered. 
Chromatic variations are quantified through a multilayer 
perceptual representation of photoreceptor signals that fits to 
human perception. 

The proposed model provides a map of perceptual 
saliency values resulting of a competitive process between 
bottom-up cues. Regions with higher scalar values in the 
final saliency map are more likely to correspond to the 
regions firstly picked by observers. One major advantage of 
our approach compared to the existing algorithms is that the 
output map provides region level attention in addition to the 
pixel level saliency value. To validate our model of visual 
attention, we tested it with ninety different images of natural 
scenes and paintings. The resulting saliency maps were 
compared to data recorded during eye tracking experiments 
conducted with thirty-three observers. Very encouraging 
results have been obtained. 

The remainder of this paper is organized as follows. The 
computational model is presented in Section 2. Section 3 
describes eye tracking experiment procedure. Section 4 is 
dedicated to the comparison between computed results and 
recorded data. A brief discussion will conclude this paper in 
section 5. 
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Figure 1. General work flow of the proposed model of 
attention. It is based on two parallel channels processing 
independently color information and achromatic variations. 
The outputs of these two channels are combined using a 
competitive approach to produce the final saliency map. 
 
 

2. COMPUTATIONAL MODEL 
 
The general work flow of the proposed computational model 
of visual attention is presented in Figure 1. Human visual 
system is sensitive to the chromatic and achromatic contrast 
of visual signals [13, 14]. Chromatic and achromatic signals 
are independently processed by distinct cortical structures. 
Taking this key feature, we propose to integrate two distinct 
modules in our model. The first one derives intensity and 
orientation variations when the second one processes color 
information. As in the human visual system, the two 
channels are fed by a common input and their outputs are 
fused into a single saliency map [17]. 
 
2.1. Retinal image 
 
In photopic vision, it is generally assumed that the human 
visual perception is based on the signals provided by three 
types of photoreceptors called cones L, M and S. In a first 
stage, the responses of these photoreceptors are integrated in 
the computational model by transforming the original RGB 
image into a retinal image. This first process consists of 
projecting the raw RGB signals of the input image into the 
LMS color space using the linear transformation procedure 
recommended by the CIE [4]. 

Inspired by experiments based on small Mondrians 
suggesting that human visual system independently 
normalizes to the maxima for each cone photoreceptor type, 
color data are normalized in the LMS space prior to input to 
the achromatic and the chromatic channels [11]. 

Different studies show that the S cones constitute less 
than 10 % of the total cone population and that the L cones 
are roughly twice as numerous as the M cones [5]. Therefore 

in the selective attention model we will assume that the 
proportions of L:M:S cones are on average 10:5:1. 
 
2.2. Achromatic channel 
 
Cones are contacted by horizontal and bipolar cells. Bipolar 
cells difference the direct input from the photoreceptors and 
the indirect input transmitted from neighboring 
photoreceptors through horizontal cells. The anatomical 
connections define concentric regions organized in a centre-
surround structure well-known as receptive field. Such a 
receptive field is a general architecture in the retina but also 
in primary visual cortex [15]. 

The centre-surround oppositions allow to efficiently 
detect local spatial discontinuities. As discontinuities are 
more likely to attract visual attention, receptive fields 
participate in detecting locations which are more salient. The 
centre-surround oppositions are implemented in the model 
with a Laplacian pyramid. As suggested by Itti et al., such a 
multi-resolution approach is interesting to simulate the 
multi-scale feature extraction performed by the human visual 
system [8]. 

Horizontal interactions between all cones make the 
pyramidal cell’s response dependent on both the amplitude 
of signals and the local spatial organization of stimuli. Then 
the pyramidal structure of the achromatic channel codes the 
most salient variations of achromatic contrasts. 

Psychophysical and physiological evidences indicate 
that orientation-sensitive neurons are present in the primary 
visual cortex. The receptive field sensitivity of these neurons 
can be well approximated by bidimensional Gabor filters [2, 
10]. The output of the achromatic pyramidal structure is then 
convoluted with a bank of Gabor filters chosen to fit 
psychophysical data. Gabor filters were tuned with the 
parameters given in [3]. 

The achromatic channel of our model of attention 
provides an intermediary map that identifies the most salient 
achromatic visual stimuli in the input color image as it could 
be performed in the primary visual cortex. 
 
2.3. Chromatic channel 
 
Anatomical evidence reveals the presence of different 
spectrally opponent cells in the human visual system. These 
cells respond in opposite directions to light wavelength 
shifts. This suggests that signals from the output of each 
cone type are merged in different opponent strategies. In 
1993, Russell and Karen de Valois proposed an efficient 
model of these early opponent strategies [6]. Inspired by 
such a model, the chromatic channel is based on a pyramidal 
structure that simulates the response of cone-opponent cells. 

The pyramidal processing of chromatic data in which 
cone-opponent comparisons are made codes the chromatic 
variability within the scene. The chromatic channel of the 
proposed model provides an intermediary map that identifies 
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the most salient chromatic visual stimuli in the input color 
image as it could be performed in the primary visual cortex. 
 
2.4. Competitive fusion 
 
The outputs of the achromatic and the chromatic channels 
have to be fused into one saliency map. In cortical areas, 
neural signals are in competition and they are merged 
according to their relative strength. Such a merging scheme 
is reproduced to compute the output saliency map of our 
model. The strongest salient locations are promoted in each 
intermediary map and a competition process reveals the 
redundancy of information. The final saliency map identifies 
regions with high energy extracted by opponent strategies 
and preserved through the multiple scales of the model. 
 

3. EYE TRACKING EXPERIMENT 
 
The relevancy of regions of interest extracted by the 
computational model we propose can be determined by how 
they fit to human visual behavior. Therefore, we recorded 
where the gaze of observers is attracted through an eye 
tracking experiment. 

Thirty-three subjects, ranging from 18 to 65 years, 
participated as unpaid volunteers. All had normal or 
corrected to normal vision and all had no color vision defect. 
All observers were naïve to the experiment. 

Eye movements of subjects were recorded using a 
QuickClamp eye tracker from Arrington Research Inc. The 
eye tracker system is mounted on a stable head and chin 
stabilizer. It incorporates an infrared camera and an infrared 
LED as illumination source. The apparatus has a theoretical 
accuracy of 0.5 deg. raw eye positions and the camera 
records with a rate of 60 Hz. 

Ninety color images with a resolution of 1280  1024 
pixels have been selected as visual stimuli. Selected images 
have various contains such as landscapes, roads, crowds, 
animals, flowers, abstract or figurative paintings, etc (see 
Figure 2 for some examples). They were presented on a 
calibrated 20-inch CRT monitor at a viewing distance of 
70 cm with a frame rate of 85 Hz. 

The subjects were placed in a darkened room. The 
height of the head and chin stabilizer was adjusted so that 
each observer was comfortable and with the gaze at the level 
of the center of the monitor. The subjects were instructed not 
to move during the experiment. 

Before the beginning of each experiment, a calibration 
procedure was performed. During such a procedure, the 
subjects are asked to fixate sixteen points that are 
sequentially presented at different locations of the screen. 
The calibration procedure is intermittently repeated during 
the experiment. Then the sequence of events was as follows: 
firstly a white fixation disk (2° visual angle) on a dark grey 
background was presented at the center of the monitor 
during 300 ms. This ensures that the observer starts his 

viewing task at the same position for each image and it 
allows to check if there is no shift in the calibration. Then an 
image was displayed during 3000 ms. Observers were 
instructed to freely look at the image. 

Fixations were derived from each raw eye tracking 
records. According to the mean fixation duration (300 ms), 
our results are in accordance with those obtained in other 
works. As we want to evaluate the effectiveness of our 
model of attention, individual scan-paths are ignored and 
valid data are merged. 
 

4. COMPARISON 
 
Figure 2 presents some typical results obtained with visual 
stimuli used in our experiments. The final saliency map 
given by our selective attention model codes the regions of 
interest of input images. These regions should correpond to 
the visual attractors that are more likely to attract attention. 

In order to judge the effectiveness of the proposed 
model of attention, saliency maps computed with the well-
established algorithm developed by Itti et al. [8] are 
presented in column (b) of Figure 2. The recorded fixations 
are also drawn on original images in column (d). It should be 
noticed that in the two models, the selection of regions of 
interest is directed by bottom-up cues. This is why only the 
locations of the first saccades are considered in order to 
minimize the top-down influences. 

For the natural scene shown in the bottom row, the first 
recorded fixation points are essentially located on the head 
of the iguana. The predictions of our model correspond to 
this location. We can clearly see that the saliency map is 
strongly correlated with the positions of the fixations of 
observers. Similar comments hold about the other examples: 
visual attractors are significantly extracted by the 
computational model we propose in this paper. 

In comparison, regions of interest are not precisely 
localized in Itti’s approach. Some areas of fixation are not 
extracted by this algorithm when they are clearly stood out 
by our model. The blue traffic sign along the highway is 
certainly the most significant example in images presented in 
this paper. According to the recorded fixation points, the 
blue traffic sign is undoubtedly a visual attractor for 
observers during the first saccades and it is pointed out as 
such by our model but not by the model of Itti et al. 
 

5. BRIEF DISCUSSION 
 
Results obtained with the selective attention model we 
presented in this communication are very encouraging. They 
demonstrate the effectiveness of our approach. The output 
saliency map efficiently identifies the bottom-up visual 
attractors in a natural scene. The first subjective compa-
risons have to be completed with an objective quantification 
of the agreement between experimental and computed data. 
This issue is currently under study. 

699



          
 

          
 

          
 

 (a) (b) (c) (d) 
 

Figure 2. Typical results for visual stimuli used in experiments. Column (a) shows examples of color input images; column 
(b) shows the saliency maps given by the computational model developed by Itti et al. [8]; column (c) shows the saliency 
maps provided by our approach; column (d) shows the first five fixations of all subjects drawn on original input images. 
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