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ABSTRACT

An ef cient temporal search range prediction method is pro-
posed to reduce the complexity of multiple reference frames
motion estimation (MRFME) in video coding. Based on a
linear model of motion-compensated residue, the behavior of
residues under MRFME is investigated, and the gain of mul-
tiple reference frames is analyzed. The proposed method uti-
lizes the current residue to estimate the gain of searching more
reference frames, and predicts the temporal search range that
maintains the coding performancewith minimum complexity.
Experimental results show that the proposed scheme can sig-
ni cantly reduce the complexity in motion estimation while
the degradation of the coding performance is negligible.

Index Terms— Multiple reference frames motion estima-
tion (MRFME), video modelling, video coding

1. INTRODUCTION

Motion estimation (ME) plays a key role in video coding. In
ME, the best-match in the reference frame is found to pre-
dict the current video block, and only the prediction error
(motion-compensated residue) needs to be encoded. Tradi-
tionally, only one reference frame is used in ME. The state-of-
art video coding standard H.264 extends the temporal search
range by utilizing multiple reference frames [1]. While sig-
ni cantly improve the coding ef ciency, multiple reference
frames motion estimation (MRFME) works at the expense of
high complexity that linearly increases with the number of
reference frames, which restricts its applicability. It is thus
desirable to nd the optimal temporal search range which can
maintain the coding performance with minimum complexity.

Abundant efforts have been made on developing ef cient
temporal search range prediction methods [2, 3, 4]. By in-
vestigating the relation between the reference frame buffer
utilization and the temporal search range, a content-adaptive
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scheme was proposed in [3] to dynamically control the search
range. Huang et al [4] applied statistical analysis to investi-
gate the relation between the temporal search range and the
available encoder information. Based on extensive experi-
ments, a scheme [4] was proposed where the temporal search
range is determined based on available encoder information
such as intra prediction cost and motion vectors.

In this work, we present a linear model of motion-compe-
nsated residue, and propose a temporal search range predic-
tion scheme based on this model. With the presented residue
model, the relation between the behavior of residues under
MRFME and the gain of multiple reference frames is inves-
tigated. The proposed scheme utilizes the current residue to
estimate the gain of searching more reference frames, and de-
termine the temporal search range. Experimental results show
that the proposed scheme can save up to 75% of ME complex-
ity with negligible degradation in the coding performance.
Moreover, the proposed scheme can be combined with any
fast block matching algorithms to accelerate the ME further.

The rest of this paper is organized as follows: Section 2
analyzes the temporal search range of MRFME based on a
linear model of motion-compensated residue. The proposed
algorithm is described in Section 3. Experimental results are
shown in Section 4 and the conclusion is given in Section 5.

2. ANALYSIS OF TEMPORAL SEARCH RANGE OF
MRFME BASED ON RESIDUE MODEL

2.1. Multiple Reference Frames Gain (MRFGain)

For different sequences, the performance improvements of
MRFME are different. For quantitative evaluation, we de ne
multiple reference frames gain (MRFGain) to be the average
PSNR improvement of MRFME relative to single reference
frame ME over a number of sampling QPs, where the average
PSNR improvement is calculated according to [5]. Table 1
shows MRFGain of some test sequences.

MRFME is a very computationally intensive module in
video encoder. For the sequences with small MRFGain, search-
ing all the reference frames may only provide very limited
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Table 1. MRFGain (dB) (TT=Table Tennis, MC=Mobile &
Calender, FG=Flower Garden)

Akiyo FG Foreman MC Tempete TT
0.2 0.36 0.44 1.03 0.71 0.15

performance improvement, while the complexity is much high-
er than that of single reference frame ME. So in this case, a
short temporal search range is expected to avoid wasting com-
putational power. On the contrary, for those sequences with
large MRFGain, to search each more reference frame may
increase the coding performance rather much, so a large tem-
poral search range is more desirable than a short one.

In the next section, a linear model of motion-compensated
residue is proposed. Later we will use this model to estimate
MRFGain and determine the temporal search range.

2.2. A Linear Model of Motion-Compensated Residue

Suppose F is the current frame and its reference frames are
the previous ones: {Ref(1), Ref(2), . . .Ref(k), . . .}, where
k is the temporal distance between F and reference frame
R(k). Let s be a pixel in F and p(k) be its prediction from
Ref(k). The motion-compensated residue is denoted as r(k),
r(k) = s − p(k). Residue r(k) is assumed to be a random
variable with zero-mean and variance σ2

r(k).
We assume that r(k) can be decomposed as

r(k) = rt(k) + rs(k), (1)

where rt(k) is the temporal innovation between F and Ref(k),
and rs(k) is the sub-integer pixel interpolation error in refer-
ence frame Ref(k).

Let σ2
rt

(k) and σ2
rs

(k) be the variances of rt(k) and rs(k)
respectively. Assuming that rt(k) and rs(k) are independent,

σ2
r (k) = σ2

rt
(k) + σ2

rs
(k). (2)

When the temporal distance k increases, the temporal in-
novation between the current frame and the reference frame
tends to be larger, causing σ2

rt
(k) to increases. We assume

that σ2
rt

(k) linearly increases with k,

σ2
rt

(k) = Ct · k, (3)

where Ct is the increasing rate of σ2
rt

(k) with respect to k.
When an object moves with a non-integer pixel displace-

ment, i.e., non-integer pixel motion, between reference frame
Ref(k) and current frame F , the sampling positions of the
object in F and Ref(k) may be different. In this case, the pre-
diction pixels from Ref(k) are at sub-integer locations and
have to be interpolated using those at integer positions, incur-
ring sub-integer pixel interpolation error rs(k). Obviously,
rs(k) should not be related to the temporal distance k, so we
model σ2

rs
(k) using a k-invariant parameter Cs, σ2

rs
(k) = Cs.

Therefore, a linear residue model is proposed

σ2
r(k) = Cs + Ct ∗ k. (4)
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Fig. 1. Experimental relationship of σ2
r (k) and k

Table 2. Model Parameters for some test sequences
Akiyo FG Foreman MC Tempete TT

Ct 1.07 29.57 6.07 20.07 9.44 23.23
Cs 0.94 31.6 10.50 56.81 41.89 9.24

A number of test sequences are encoded by H.264 encoder
with MRFME, and the residue variances corresponding to dif-
ferent reference frames are calculated and compared with the
proposed model. As r(k) is assumed to be zero-mean, we
approximate σ2

r(k) using r2(k) averaged over the whole se-
quence. Due to limited space, only part of experimental re-
sults are shown in Fig.1. It can be seen that although quite
different in video contents, for all the sequences, the relation
between σ2

r (k) and k appears to be quite linear, which is con-
sistent with the proposed model. The best- t Cs and Ct for
some test sequences are shown in Table 2.

2.3. Analysis of MRFGain using the Proposed Model

In video coding, block-level motion estimation is performed.
We de ne the block residue energy as r2(k), which is r2(k)
averaged over the block. Normally, smaller r2(k) means bet-
ter prediction and leads to higher coding performance. In
MRFME, if r2(k + 1) is smaller than r2(k), searching more
reference frames can improve performance.

We de ne r2
t (k) and r2

s(k), which are r2
t (k) and r2

s(k)
averaged over the block respectively. As rs(k) and rt(k) are
independent, we have r2(k) ≈ r2

s(k)+r2
t (k). To analyze MR-

FGain, the behaviors of r2
t (k) and r2

s(k) with increasing k are
investigated as follows.

When the temporal distance increases, on one hand, the
temporal innovation between frames tends to increase, and
thus rt(k + 1) tends to have larger amplitude than rt(k), giv-
ing rise to r2

t (k + 1) > r2
t (k). On the other hand, it is possible

that the object in the current frame F have non-integer pixel
motion with respect to Ref(k), but integer pixel motion with
respect to Ref(k + 1). In this case, while there is sub-integer
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pixel interpolation error in r(k), i.e., r2
s(k) > 0, the interpo-

lation error in r(k + 1) is zero, i.e., r2
s(k + 1) = 0.

Let Δt = r2
t (k + 1) − r2

t (k) and Δs = r2
s(k). Sup-

pose the object in F has integer pixel motion with respect to
Ref(k + 1), which means r2

s(k + 1) = 0. When extending
temporal search range from from Ref(k) to Ref(k + 1), the
increase of residue energy Δ(k) would be

Δ(k) = r2(k + 1) − r2(k)

=
(
r2
t (k + 1) − r2

t (k)
)

+
(
r2
s(k + 1) − r2

s(k)
)

=
(
r2
t (k + 1) − r2

t (k)
)

+
(
0 − r2

s(k)
)

= Δt(k) − Δs(k). (5)

Obviously, if Δt(k) < Δs(k), Δ(k) would be negative,
meaning searching one more reference frame Ref(k + 1)
would result in smaller residue energy and improve coding
performance. Furthermore, for large Δs(k) and small Δt(k),
large residue energy reduction (MRFGain equivalently) tends
to be achieved.

The values of Δs(k) and Δt(k) are related to the pa-
rameters of the proposed model, i.e., Cs and Ct. Parameter
Cs is the interpolation error variance σ2

rs
(k). Therefore, for

video signal with large Cs, rs(k) tends to have large ampli-
tude, and thus Δs(k) = r2

s(k) tends to be large. Parameter
Ct is the increasing rate of σ2

rt
(k). Hence, for video signal

with small Ct, σ2
rt

(k) and σ2
rt

(k + 1) tends to be similar, so

Δt(k) = r2
t (k + 1) − r2

t (k) tends to be small. Based on the
above analysis, it seems that for video signal with large Cs

and small Ct, the corresponding MRFGain tends to be large.
On the contrary, in the case of small Cs and large Ct, MRF-
Gain tends to be small.

To validate the above analysis, we compare Cs and Ct

shown in Table 2 with MRFGain in Table 1. As predicted
by our analysis, large MRFGain is observed for video se-
quences with relatively large Cs and relatively small Ct, such
as Mobile & Calendar, while for video sequence with rela-
tively small Cs and relatively large Ct, such as Table Ten-
nis, the MRFGain is small. Inspired by this, we de ne G =
Cs/Ct as an estimation of MRFGain.

3. THE PROPOSED SCHEME

With the analysis in Section 2, we propose a simple yet ef-
cient block-level temporal search range prediction method

based on the estimation of G for every block.
We suppose MRFME is performed in a time-reverse man-

ner, with Ref(1) being the rst to be searched. For different
Ref(k) (k > 1 vs k = 1), the estimation methods of G are
different, which are described as follows.

Suppose the current reference frame is Ref(k) (k > 1)
and the search on this frame has been nished. To determine
if the next reference frame Ref(k + 1) should be searched,

we will estimate Cs and Ct from the available information
r2(k − 1) and r2(k). Statistically r2(k) converges to σ2

r (k).
Therefore, we use r2(k) as the estimation of σ2

r (k). Substi-
tuting r2(k − 1) = σ2

r(k − 1) and r2(k) = σ2
r (k) into (4),

parameters Cs and Ct can be easily obtained, and the corre-
sponding G = Cs/Ct is

G =
k · r2(k − 1) − (k − 1) · r2(k)

r2(k) − r2(k − 1)
. (6)

If the current reference frame is Ref(1) (k = 1), r2(k − 1)
is not available, so we cannot calculate Cs and Ct using (6).
In this case, we will evaluate r2(1) and the mean of residues
in the block r(1) to estimate G. As sub-integer pixel inter-
polation lter a is a low-pass lter (LF), it cannot recover the
high frequency (HF) component in the reference frame so that
the HF of the current block cannot be compensated. As a re-
sult, the interpolation error tends to have small LF compo-
nent and large HF component. Therefore, if r(1) is small and
r2(1) is large, i.e., the residue has small LF component and
large HF component, the dominant component in the residue
should be rs(k), meaning large Cs and small Ct, i.e., large
G. Hence, in this case G is estimated using

G = γ · r2(1)
(r(1))2

, (7)

where factor γ is tuned from training data. For different se-
quence, a xed value of γ = 6 is used.

The value of G is compared with a prede ned threshold
TG. If G is larger than TG (G > TG), probably searching
more reference frame will improve the performance, so ME
continues with Ref(k + 1); otherwise (G ≤ TG), MRFME
of the current block terminates, and the rest reference frames
will not be searched. Obviously, the higher the TG is, the
more computation is saved; the lower the TG is, the less per-
formance drop is achieved.

Apart from G, based on our analysis in Section 2, motion
vector (MV) is also used to determine the temporal search
range. For Ref(k), if the found best motion vector MV (k)
is an integer pixel MV, probably the object has integer motion
between Ref(k) and F . According to our analysis, there is
no sub-pixel interpolation error in r2(k), and thus it would be
dif cult to nd a better prediction in the rest reference frames.
So MRFME of the current block terminates.

The proposed algorithm can be summarized as follows:
1. Set k = 1 ( rst reference frame Ref(1)). Perform ME

with respect to Ref(k), MV (k), r2(1) and r(1) can be ob-
tained. Estimate G using (7). If G ≤ TG or MV (k) is an
integer pixel MV, MRFME of the current block terminates;
otherwise, go step 2;

2. Set k = k + 1 (move to the next reference frame). Per-
form ME with respect to Ref(k), MV (k) and r2(k) can be
obtained. Estimate G using (6). If G ≤ TG or MV (k) is an
integer pixel MV, MRFME of the current block terminates;
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Table 3. Akiyo
JM+Ref5 FMRFME[4] Proposed

QP
BR PSNR BR PSNR Ref BR PSNR Ref

26 118 40.61 120 40.53 1.20 120 40.54 1.17
28 85 39.34 87 39.24 1.11 87 39.28 1.22
30 62 37.99 63 37.88 1.06 62 37.96 1.27
32 45 36.63 46 36.50 1.03 45 36.61 1.31

Table 4. Foreman
JM+Ref5 FMRFME[4] Proposed

QP
BR PSNR BR PSNR Ref BR PSNR Ref

26 671 37.28 685 37.19 2.36 686 37.20 2.08
28 488 35.99 499 35.88 2.00 500 35.90 1.75
30 351 34.64 359 34.51 1.72 358 34.55 1.63
32 256 33.34 261 33.19 1.49 261 33.25 1.58

otherwise, go step 2.
For more ef cient implementation, r2(k) in the proposed

scheme can be replaced by video encoder ME output Mcost,
which is a function of residue to measure the prediction ac-
curacy and has high correlation with r2(k). Our experiments
show that this will not cause performance loss while the cal-
culation of r2(k) can be saved.

4. EXPERIMENTAL RESULTS

Four CIF sequences, including Akiyo, Foreman, Flower Gar-
den and Mobile & Calendar, are used in the experiment. The
proposed scheme was integrated into H.264 encoder JM 10.2
to encode these sequences. Two other schemes are also used
for comparison. One is the original JM 10.2 with 5 refer-
ence frames (JM+Ref5). The other one is the temporal search
range prediction method proposed in [4], which we denote as
FMRFME.

The coding performance is measured by bit rate (BR) in
terms of kbps, and PSNR in terms of dB. The complexity of
ME is measured by the average number of searched reference
frames, which we denote as Ref . Table 3-5 summarizes the
experimental results of the test sequences. It can be seen that
compared to JM+Ref5, the proposed scheme can signi cantly
reduce the number of searched reference frames, while the
coding performance decreasing very mildly.

For better comparison between FMRFME [4] and the pro-
posed algorithm, Table 7 shows their average PSNR loss rela-
tive to JM+Ref5, which we denote as Δ PSNR, and the aver-
age complexity reduction ΔRef . The Δ PSNR is calculated
according to [5], and the calculation of ΔRef is given in Ta-
ble 7. Compared to FMRFME [4], the proposed scheme tends
to achieve better coding performance while searching fewer
reference frames, such as the case of Flower Garden.

5. CONCLUSION

In this paper, an ef cient temporal search range prediction
method for MRFME is presented. First, a linear model of

Table 5. Mobile & Calender
JM+Ref5 FMRFME[4] Proposed

QP
BR PSNR BR PSNR Ref BR PSNR Ref

26 2202 35.26 2236 35.24 3.78 2259 35.23 3.09
28 1650 33.61 1684 33.57 3.59 1718 33.56 2.76
30 1182 31.81 1210 31.72 3.34 1229 31.74 2.71
32 824 30.13 851 30.06 2.98 854 30.03 2.68

Table 6. Flower Garden
JM+Ref5 FMRFME[4] Proposed

QP
BR PSNR BR PSNR Ref BR PSNR Ref

26 2601 35.30 2613 35.28 3.40 2616 35.28 2.74
28 1982 33.56 1992 33.54 3.30 1994 33.54 2.37
30 1437 31.65 1445 31.61 3.18 1445 31.63 2.26
32 1013 29.87 1018 29.82 3.05 1017 29.84 2.21

motion-compensated residue is presented. Then, the behav-
ior of residues under MRFME is investigated. The proposed
method analyzes the current prediction residue to determine
if it is necessary to search more reference frames. Experimen-
tal results show that up to 75% of the complexity of ME can
be saved by the proposed method, while the degradation of
performance is negligible.
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