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ABSTRACT
In this paper, we apply the primal-dual decomposition and subgradi-
ent projection methods to solve the rate-distortion optimization prob-
lem with the constant bit rate constraint. The primal decomposition
method enables spatial or temporal prediction dependency within a
Group Of Picture (GOP) to be processed in the master primal prob-
lem. As a result, we can apply the dual decomposition to minimize
independently the Lagrangian cost of all the MBs using the reference
software model of H.264. Furthermore, the optimal Lagrange multi-
plier λ∗ is iteratively derived from the solution of the dual problem.
As an example, we derive the optimal bit allocation condition with
the consideration of temporal prediction dependency among the pic-
tures. Experimental results show that the proposed method achieves
better performance than the reference software model of H.264 with
rate control for given bit constraint.

Index Terms— H.264, R-D optimization, optimal bit allocation,
primal-dual decomposition, rate control.

1. INTRODUCTION
After Rate-Distortion (R-D) optimization is introduced for video
compression using the Lagrange multiplier [1][2], there are many
methods to reduce the complexity in deciding Macro Block (MB)
modes, Motion Vectors (MVs) for a given Lagrange multiplier λ.
Even though R-D optimization method is not mandatory for standard
video compression such as H.264 [3], it is the main part of video
coding to improve the coding efficiency [2][4]. Therefore, we review
the relation between R-D optimization and previous works. R-D op-
timization with inequality constraint in a frame is mathematically
formulated as follows:

min
m

NX
n=1

dn(mn) s.t.
NX

n=1

xn(mn) ≤ XF (1)

where mn = (Mn,MVn, QPn,Refn) is a vector of MB mode,
MVs, Quantization Parameter (QP) and reference frames for inter
prediction. N is the number of MBs in a frame and XF is the bit
constraint of a frame. dn and xn are distortion and coded bits of the
n-th MB, respectively. The optimization problem (1) can be solved
by the Lagrangian duality in order to obtain the optimal solution
if the problem is a convex optimization problem and satisfies the
Slater’s condition [5]. After the Lagrange duality is applied, the dual
function of the primal problem (1) is

q(λ) = min
m

NX
n=1

„
dn(mn) + λxn(mn)

«
− λXF (2)
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and its dual problem is maxλ≥0 q(λ). If we know the optimal solu-
tion of the dual problem, we can obtain the solution of the primal
problem (1) after solving (2). However, in order to simplify the
above optimization problems, the relation between λ and QP was
derived in [2][6][7][8] and the estimation of XF from QP was stud-
ied in [9]. The reference software model of H.264 (simply denoted
as JM model) [10] has the following relation:

λ = κ2
(QP−12)

3 , (3)

XF = aQP−1 + bQP−2
(4)

where κ is a function of picture types (I, P, B), the number of ref-
erenced frames and QP, and a and b are estimated using the linear
regression based on Mean Absolute Difference (MAD) and target
bits. Equations (3) and (4) give estimated solution for λ of the dual
problem, that is, QP1 is estimated from (4) for a given constraint
XF and then λ is induced from (3). Thus, JM model does not di-
rectly solve the dual problem. For a given λ, JM model minimizes
the Lagrangian function, that is, solves the problem (2). However, if
there is no bit constraint, we can just choose any QP to derive λ from
(3). Consequently, JM model has two coding modes: one is a coding
mode without a rate constraint and the other is with a rate constraint.

Without a rate constraint, users just specify any QP and Group
Of Picture (GOP) structure, and then JM model solves the problem
(2). As a result, users do not know how many bits are generated
after encoding. In this case, reference frames, QP and λ are given,
the optimization variables are MB modes and MVs for all MBs of a
frame. This problem can be simplified by the independent assump-
tion among the MBs. Consequently, the problem (2) is

q(λ) =
NX

n=1

min
mn

„
dn(mn) + λxn(mn)

«
− λXF (5)

where the optimization variables are MB mode and MVs for each
MB. This optimization problem is solved by the following method:
First, fix a MB mode of all the inter MB modes and then find op-
timal MVs with or without considering both residual bits and MV
bits for the MB mode. Next, given the optimal MVs for inter MB
modes, find the optimal MB mode which minimizes the Lagrangian
cost ln(mn), that is, dn(mn) + λxn(mn) among the inter and the
other MB modes such as intra MB and direct MB modes. In order to
reduce the loss of coding efficiency of independent assumption, ref-
erences [1][11][12] solve the dependent optimization problem (2)
using dynamic programming without considering frame-level de-
pendency or λ. Reference [13] considers the frame-level dependent

1For simplicity, we directly denote QP instead of Qstep in (4), and QP is
derived from the mapping between QP and Qstep.
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coding problem using the Viterbi Algorithm (VA), but it considers
that distortion and coded bits are only function of QP.

With a rate constraint, users specify the coded bit rate and GOP
structure, and then JM model solves the problem (5) with indepen-
dent assumption. Although λ and QP are obtained from equations
(3) and (4), bit constraint XF in (2) should be derived from user bit
rate constraint because user bit rate constraint is average bits per sec-
ond, but not MB-level or frame-level bit constraint. Therefore, MB-
level or frame-level which are generalized as a basic unit (a group
of MBs) [14] and GOP-level bit constraints need to be derived from
a given user bit rate constraint. JM model uses the basic unit for a
bit constraint. Without loss of generality, the basic unit is consid-
ered as a MB or a frame in this paper. If we find target bits for a
basic unit, the other parameters can be obtained from equations (3)
and (4). References [14][15][16] show how to estimate target bits
of a basic unit from user bit rate constraint, video frame rate, buffer
fullness, picture type and some other information.

Thus, JM model of H.264 mainly focuses on real-time or low
complexity rate control scheme with the constant or variable bit rate
constraint. Therefore, the rate control method induces loss of coding
efficiency, and it cannot tightly satisfy the bit constraint which are
shown in this paper. In case of non-real time applications with the
constant bit rate constraint, the loss can be reduced. In this paper,
we apply the primal-dual decomposition and subgradient projection
methods to solve directly the problem (1) with the constant GOP bit
constraint. Although this method can be used for the optimal bit al-
location of any basic unit with consideration of spatial and temporal
prediction dependency, we show the frame-level bit allocation within
a GOP with considering temporal prediction dependency as an ex-
ample. Thus, we ignore spatial prediction dependency, that is, MBs
which have intra and spatial direct modes are independent. In ad-
dition, the optimal bit allocation condition can be applied for video
coding without rate control.

The rest of this paper is organized as follows. In section 2, we
explain primal-dual decomposition and subgradient projection, and
we apply these methods for MB-level bit allocation of an intra-sliced
picture with independent assumption. In section 3, frame-level bit
allocation is considered with temporal dependency. Experimental
results are shown in section 4.

2. PRIMAL-DUAL DECOMPOSITION
In this section, we introduce the general framework to solve opti-
mization problems using the primal-dual decomposition [17][18].
The primal decomposition corresponds to deciding the optimal bit
constraint of a basic unit and dual decomposition and the Lagrangian
duality are equivalent to obtaining the optimal primal and dual so-
lution for the given optimal bit constraint as a result of the primal
decomposition. For simplicity, we simplify the notation of problem
(1) as follows:

min
x

X
n

d(xn), s.t.
X

n

xn ≤ X (6)

min
y

min
x

X
n

d(xn) s.t. xn ≤ yn,
X

n

yn ≤ X, ∀n (7)

min
x

X
n

d(xn), s.t. xn ≤ yn, ∀n (8)

min
y

q∗(y), s.t.
X

n

yn ≤ X (9)

where q∗(y) = minx

P
n d(xn) + λ∗

n(xn − yn) which is the
optimal value of the problem (8). The original problem (6) can be
reformulated into the problem (7) by introducing auxiliary variables

y. Then the problem (7) can be decomposed into two optimization
problems (8) and (9) with respect to (w.r.t.) optimization variables x
and y, respectively. The decomposition from problem (6) to problem
(9) is called as a master primal decomposition, and the decomposi-
tion from problem (8) to problem (11) is the dual decomposition.
Problem (8) is solved by the Lagrangian duality as follows:

q(y, λ) = min
x

X
n

d(xn) + λn(xn − yn) (10)

=
X

n

min
xn

d(xn) + λn(xn − yn) (11)

q∗(y) = max
λ�0

q(y, λ) = max
λ�0

X
n

qn(yn, λn) (12)

=
X

n

max
λn≥0

qn(yn, λn) =
X

n

q∗n(yn) (13)

where qn(yn, λn) = minxn d(xn) + λn(xn − yn). Equations (11)
and (13) are derived from independent assumption. The problem
(11) is solved by the R-D optimization which is implemented in JM
model [10] and the dual problem (13) can be solved by the subgra-
dient projection method [17] as follows:

λk+1
n =

»
λk

n + ηkgk
n

–+

= max(λk
n + ηkgk

n, 0) (14)

where ηk is a positive step size at iteration k and [·]+ denotes the
projection onto the nonnegative orthant. The projection operation
guarantees that the Lagrange multipliers λn satisfy their nonnegative
conditions. The subgradient gk

n of qn(λk
n, yn) is xk

n − yn which
is derived in [17]. Thus, the subgradient of qn(λk

n, yn) is just the
difference between coded bits and the constraint bits at iteration k.
If coded bits xk

n are smaller than the constraint bits yn, the current
Lagrangian multiplier λk

n decreases, otherwise, λk
n increases. From

the R-D optimization, smaller λ increases the coded bits. Therefore,
the coded bits are getting close to the constraint bits after several
iterations.

The master primal problem (9) is also solved by the subgradient
projection method. However, the constraint is not as simple as in
(14). The solution of the problem (9) is obtained from two proce-
dures. First, the optimization variables yn are updated by the sub-
gradient as follows:

ỹk+1
n = yk

n − ηkgk
n (15)

and then ỹ is projected onto the feasible constraint set as:

min
y

‖ ỹ − y ‖2, s.t.
X

n

yn ≤ X (16)

which is formulated from the fact that the projected point y from
ỹ minimizes the distance between two points. This problem can be
solved using a very efficient algorithm discussed in [19]. Reference
[17] shows that the subgradient gk

n of q∗n(yn) at yk
n is −λk

n where λk
n

is the optimal dual variable of the sub-problem in (8). Consequently,
more bits are allocated to MBs or pictures (basic units) which have
larger λ since larger λ implies that distortion of a MB or a picture de-
creases further according to the unit bit increment of the constraint.
As a result, if we reallocate bits, sum of distortion can be decreased.
Furthermore, all the subgradients of MBs or pictures should be equal
for the optimal bit allocation. Because the sensitivity of the optimal
values of all the MBs or pictures are equal, there is no way to reallo-
cate bits to decrease sum of distortion. This can be clearly observed
from (15) since ỹk+1

n increase equally if their subgradient gk
n and

step size ηk are equal, and then ỹk+1
n are projected onto the feasible

set shown in (16). The projected yk+1
n are the same as yk

n which
results from [19].
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3. OPTIMIZATION WITH TEMPORAL DEPENDENCY
In the previous section, we assume that all the distortion and coded
bit function are independent. In this section, independent assumption
among the basic units is removed. Even though we only consider a
frame-level optimization problem with temporal dependency within
a GOP, there is no restriction in applying MB-level optimization with
spatial dependency. However, we still assume that all the MBs which
have spatial prediction dependency are independent for simplicity,
but temporal coding dependency is considered among the basic units
(frames). With this assumption, a single λ for all the MBs in a frame
is optimal which is explained in the previous section.

Equation (6) is reformulated for the frame-level optimization
with a GOP bit constraint as follows:

min
s

FX
f=1

Df (sf ,x
f
ref ) s.t.

FX
f=1

Xf (sf ,x
f
ref ) ≤ Xgop (17)

where Df (sf ,x
f
ref ) =

PN
n=1 dn(mn), Xf (sf ,x

f
ref ) =

PN
n=1 xn(mn)

and sf = (Mf ,MVf ,QPf ). Mf ,MVf ,QPf and xf
ref are MB

modes, MVs, QPs and bits of reference frames for all the MBs in a
frame f, Xgop is a GOP bit constraint and F is the number of frames
within a GOP. Distortion Df and bits Xf of a frame f depend on all
the MB modes, MVs and QPs as well as bits of reference frames.
Therefore, every frame can not be optimized independently in the
problem (17) due to the dependency of bits of reference frames xf

ref .
As a specific example, we only consider the 1st GOP structure

which starts with the Instantaneous Decoder Refresh (IDR) frame
and the close GOP. However, the open GOP and any number and
prediction dependency of B and P frames within a GOP are not lim-
ited to the frame-level optimization with dependency. Here, all the B
frames within a GOP are predicted from the same reference frames
I and P, and the P frame is predicted from the I frame. When we
perform the master primal decomposition, dependency among the
frames are considered. As in section 2, auxiliary variables yf are in-
duced for each frame bits. Consequently, the problem in (17) is de-
composed into one master primal problem (19) and F sub-problems
(18) which are solved by the Lagrangian duality:

min
s

Df (sf ,y
f
ref ) s.t. Xf (sf ,y

f
ref ) ≤ yf (18)

min
y

X
f

Q∗
f (yk,yf

ref ), s.t.
X

f

yf ≤ Xgop (19)

where Q∗
f (yf ,yf

ref ) are the optimal values of sub-problems (18) for
a given y, and the reference frame bits are yw

ref = (y1, yF ) where
w ∈ {2, .., F − 1} for B frames, yF

ref = y1 for the P frame and
y1

ref = ∅ since the I frame has no reference frames. Compar-
ing (17) to (18), we can recognize the main benefit from the pri-
mal decomposition. In the formulation (17), the reference frame bits
xf

ref prevents independent optimization, but in the formulation (18),
xf

ref = yf
ref because given yf , Xf (sf

∗) are yf due to the comple-
mentary slackness condition [5]. Therefore, we reuse the same ref-
erence software model of H.264 to minimize the Lagrangian cost
in problem (18) with the consideration of dependency. However,
the dependency among the frames is processed in the master pri-
mal problem as shown in (19) which is a much simpler optimization
problem.

In order to solve the problem in (18), we use the Lagrangian du-
ality and subgradient projection which are explained in the section
2. Therefore, we only discuss the master primal problem (19) in
this section. Due to the limitation of space, we only show the sub-
gradients of

PF
f=1 Q∗

f (yf , yf
ref ) w.r.t. B, P and I pictures yf at ŷf

without proof as follows:
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Fig. 1. log

˛̨
˛̨ P

f minsf L′
f (sf , ŷ

f
ref )

˛̨
˛̨ and its linear fit at λ̂(QP ).

− λ̂k, k ∈ {2, .., F − 1},−
„

λ̂F −
F−1X
f=2

min
sf

L′
f (sf , ŷF )

«

and −
„

λ̂1 −
FX

f=2

min
sf

L′
f (sf , ŷ1)

«

where L′
f (sf , ŷ

f
refi

) =
∂Lf (sf ,y

f
refi

)

∂y
f
refi

˛̨
˛̨
y

f
refi

=ŷ
f
refi

, ŷf
ref ∈ {ŷF , ŷ1}

which shows the variation of Lagrangian cost of a frame f w.r.t. the
bit variation of its reference frame. Thus, L′

f (sf , ŷ
f
ref ) is gen-

erally negative because increasing of reference frame bits induces
decreasing of the Lagrangian cost of the frame f. As a result, the sub-
gradients of referenced frames which are used as reference frames
for prediction are smaller than independent frames for given equal
λs. It means that more bits are allocated to referenced frames from
equation (15). This result matches with intuition, that is, referenced
frames are more important than non-referenced frames because they
are used for prediction. As explained in section 2, the subgradients
of all the frames are equal for the optimal bit allocation. Therefore,
the relation among the λ of pictures is derived as follows:

λI −
FX

f=2

min
sf

L′
f (sf , yI) = λP −

F−1X
f=2

min
sf

L′
f (sf , yP ) = λB

where λI = λ1, λP = λF and λB = λk, k ∈ {2, .., F − 1}.
Consequently, λI ≤ λP ≤ λB . This result explains the reason
why JM model uses different κ of λ in (3) for different picture types
as well as the number of prediction dependency. Furthermore, if B
frames are used for prediction, the referenced B frames have differ-
ent λs from non-referenced B frames. However, current JM model
[10] uses the same κ for I and P pictures. minsf L′

f (sf , ŷ
f
ref ) is ex-

perimentally estimated. Figures 1 represents sum of the variation of
the Lagrangian cost is closer to exponential decrement. Exponential
decrement explains that bits of reference frames (quality of reference
frames) are more important at low bit rate, that is, at large λ. As a
result,

P
f minsf L′

f (sf , ŷ
f
ref ) is modeled as − exp(αQP+β) where

α and β are constants.

4. EXPERIMENTAL RESULTS
In this section, we compare the performance of two coding modes
(without rate control and with rate control) of JM model [10] with
the proposed method. We set QP=35 in JM model without Rate
Control (RC) and then the coded bits after encoding are used for the
constraint bits. Initial QP is set to JM model with RC and proposed
encoder. First, we assume all the frames are independent. There-
fore, a global λ for all the frames within a GOP induces an optimal
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Fig. 2. λ of frames with independent assumption.

bit allocation since all the frames have equal λs. In order to compare
the performance, we set equal κ of (3) of JM model for all the pic-
ture types according to independent assumption. A GOP consists of
one I and P pictures and seven B pictures. Figure 2 illustrates that
in JM model without RC, every frame has equal λ and the proposed
method also has equal λ after iterations, but JM model with RC has
different λ, especially at the last B frame. However, JM model with
RC predicts encoded bits and QP to satisfy bit constraint and its dual
variable λ is derived from (3). Consequently, it has some perfor-
mance degradation.

In the next experiment, we consider temporal dependency
among the frames within a GOP. Therefore, κ of (3) of JM model
is set to have different values of the reference software model [10].
Proposed method performs QP optimization within ±1 at center QP
which is derived from λ to give more achievable bit region. Here, we
only show the last iteration. Figure 3 shows the different λs among
I, P and B pictures. All the B pictures have the same λ except JM
model with RC. Thus, bit allocation of JM model with RC for B
frames is not optimal. Proposed method use different λs for I and P
pictures as a result of section 3, but JM model without RC uses the
same λ for I and P pictures. Figure 4 illustrates the overall encoded
bits and Y-PSNR(dB) with independent assumption (I) and temporal
dependency (D). The bits of JM model without RC are constraints
to JM model with RC and the proposed method. The constraint
bits of temporal dependency (coded bits of JM model without RC)
increase since λs of I and P pictures become smaller. Due to R-D
optimization, smaller λ increases coded bits. In the independent
experiment, proposed method allows constraint violation within 4%
of allocated bits, but in the dependent case, only 0.1% constraint
violation is allowed. Therefore, the dependent experiment meets
more tightly bit constraint. Small bit constraint violation is allowed
to consider the convex-hull point around the constraint. JM model
with RC does not satisfy the constraint well in addition to having
lower PSNR.

5. REFERENCES
[1] A. Ortega and K. Ramchandran, “Rate-distortion methods for image

and video compression: An overview,” IEEE Signal Processing Mag.,
vol. 15, pp. 23–50, Nov. 1998.

[2] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Processing Mag., vol. 15, pp. 74–99, Nov.
1998.

[3] “Advanced video coding for generic audiovisual services,” ITU-T Rec-
ommendation H.264 & ISO/IEC 14496-10 AVC, 2003.

[4] A. Puria, X. Chenb, and A. Luthrac, “Video coding using the
h.264/mpeg-4 avc compression standard,” Signal Processing: Image
Communication, vol. 19, pp. 793–849, Oct. 2004.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[6] T. Wiegand and B. Girod, “Lagrange multiplier selection in hybrid
video coder control,” in Proc. IEEE ICIP, 2001.

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

900

Encoding order of frames

λ

H.264 w/o RC
H.264 w/ RC
Proposed (last iteration)

Fig. 3. λ of frames with temporal dependency.

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

x 104

30.8

31

31.2

31.4

31.6

31.8

32

32.2

32.4

GOP bit

Y
−P

S
N

R
(d

B
)

Foreman

H.264 w/o RC (I)
H.264 w/o RC(D)
H.264 w/ RC (I)
H.264 w/ RC (D)
Proposed (I)
Proposed (D)

Bit
constraint(I)

Bit
constraint(D)

Fig. 4. PSNR vs. bit with dependent and independent cases.

[7] K. Takagi, “Lagrange multiplier and rd-characteristics,” JVT-C084,
ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, May 2002.

[8] T. Weigand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,
“Rate-constrained coder control and comparison of video coding stan-
dards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 688–703,
July 2003.

[9] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using
quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 7, pp. 246–250, Feb. 1997.

[10] H.264/AVC reference software (JM11.0), HHI. [Online]. Available:
http://iphome.hhi.de/suehring/tml/download/

[11] T. Wiegand, M. Lightstone, T. G. Campbell, and S. k. Mitra, “Rate-
distortion optimized mode selection for very low bit rate video coding
and the emerging h.263 standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 2, pp. 182–190, Apr. 1996.

[12] Y. Yang and S. S. Hemami, “Generalized rate-distortion optimiza-
tion for motion-compensatedvideo coders,” IEEE Trans. Circuits Syst.
Video Technol., vol. 10, pp. 942–955, Sept. 2000.

[13] K. Ramchandran, A. Ortega, and M. vetterli, “Bit allocation for de-
pendent quantization with applications to multiresolution and mpeg
video coders,” IEEE Trans. Image Processing, vol. 3, pp. 533–545,
Sept. 1994.

[14] Z. Li, F. Pan, K. P. Lim, G. Feng, X. Lin, and S. Rahardja, “Adap-
tive basic unit layer rate control for jvt,” JVT-G012-r1, ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6, Mar. 2003.

[15] H. Lee, T. Chiang, and Y. Zhang, “Scalalble rate control for mpeg-4
video,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 878–
894, Sept. 2000.

[16] Z. Li, C. Zhu, N. Ling, X. Yang, G. Feng, S. Wu, and F. Pan, “A unified
architecture for real-time video-coding systems,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, pp. 472– 487, June 2003.

[17] D.P.Bertsekar, Nonlinear Programming, 2nd ed. Athena Scientific,
2003.

[18] B. Johansson and M. Johansson, “Primal and dual approaches to dis-
tributed cross-layer optimization,” in Proc. 16th IFAC World Congress,
Prague, Czech republic 2005.

[19] D. Palomar, “Convex primal decomposition for multicarrier linear
mimo transceivers,” IEEE Trans. Signal Processing, vol. 53, no. 12,
pp. 4661–4674, Dec. 2005.

668


