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ABSTRACT

Stochastic simulation of biological systems has received
much attention recently. A very promising stochastic simu-
lation method is the τ -leap method, which can signi cantly
accelerate simulation with controllable accuracy. However,
all current τ -leap methods produce biased results, which can
cause large simulation errors. In this paper, we analyze the
expected number of reactions occurring during each leap.
Relying on the analytical results, we develop an unbiased
Poisson τ -leap method and an unbiased binomial τ -leap
method. Simulations demonstrate that our new unbiased τ -
leap method can signi cantly improve simulation accuracy
without sacri cing simulation speed.

Index Terms— Biological system modeling, Stochastic
simulation, Parameter estimation, Cell signalling pathway

1. INTRODUCTION

Biochemical systems in living cells are inherently stochastic
due to small number of reactant molecules involved. To in-
vestigate the stochastic dynamics of such systems, stochastic
approaches rather than the traditional deterministic chemical
kinetics are needed. The exact stochastic simulation algo-
rithm(SSA), developed by Gillespie [1], can simulate every
reacting event occurring in a well-stirred chemical reaction
system, thereby revealing the stochastic nature of the system.
However, Gillespie’s exact SSA requires large computation
and is impractical for simulating many real systems.
To accelerate simulation speed, Gillespie developed

an approximate simulation method termed Poisson τ -leap
method [2, 3]. In the Poisson τ -leap method, a number of
reactions are allowed to occur in a relative larger time inter-
val of duration τ . The number of times, Km, that the mth
reaction channel res in a time interval is approximated by a
Poisson random variable. The value of τ is carefully chosen
to tradeoff accuracy for simulation speed. As the realization
of a Poisson random variable can be any nonnegative integer,
there always is a certain probability that some reaction chan-
nels re so many times during a leap that more molecules of
some reactants will be consumed than are actually available.

When this occurs, the numbers of molecules of those reac-
tants become negative. To deal with the problem of negative
number of molecules, the binomial τ -leap method, where the
Poisson random variables used in the Poisson τ -leap method
are substituted by binomial random variables with the same
mean, was proposed in [4, 5]. More recently, a multinomial
τ -leap method was developed in [6] to improve the simulation
ef ciency of the binomial τ -leap method. Since more than
one reactions occur during a leap, there always are certain
changes in propensity functions. To reduce the simulation
errors caused by such changes in propensity functions, Gille-
spie proposed a midpoint τ -leap method, where the mean of
the Poisson random variables is calculated from the propen-
sity functions at an estimated midpoint during a leap [2]. The
midpoint τ -leap method was also applied to the binomial
τ -leap method [4]. For a review of stochastic simulation
methods, we refer the readers to [7].
Due to the changes in propensity functions during a leap,

the mean of Km used in all the τ -leap methods mentioned
earlier is not equal to the true mean, as we demonstrated in
[8]. Hence, all current τ -leap methods produce bias in sim-
ulation results, which can cause large simulation errors. In
this paper, we rst analyze the true mean of Km based on
the chemical master equation (CME). After getting the true
mean, we develop an unbiased Poisson τ -leap method and
an unbiased binomial τ -leap method, which can signi cantly
improve simulation accuracy.

2. SYSTEM DESCRIPTION

We are concerned here a well-stirred mixture ofN ≥ 1mole-
cular species {S1, · · · , SN} that chemically interact through
M ≥ 1 reaction channels {R1, · · · , RM}. We describe the
dynamic state of this chemical system by the state vector
X(t) = [X1(t), · · · , XN (t)]T , whereXn(t), n = 1, · · · , N ,
is the number of Sn molecules at time t, and [·]T denotes the
transpose of the vector in the bracket. Following Gillespie
[2, 3], we de ne the dynamics of reaction Rm by a state-
change vector νm = [ν1m, · · · , νNm]T , where νnm gives the
changes in the Sn molecular population produced by one Rm

reaction, and a propensity function am(x) together with the
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fundamental premise of stochastic chemical kinetics:

am(x)dt
�
= the probability, givenX(t) = x, that one
reactionRm will occur in the next
in nitesimal time interval [t, t + dt).

(1)

De ne the probability rate constant cm. Let hm(x) be
the number of distinct combinations of Rm reactant mole-
cules in the system at time t, then the propensity function
is given by am(x) = cmhm(x) [1]. Gillespie showed that
for the bimolecular reaction Rm of the form S1 + S2 →
product(s), we have am(x) = cmx1x2. For the bimolecu-
lar reaction Rm of the form S1 + S1 →product(s), we have
am(x) = cmx1(x1 − 1)/2. For a monomolecular reaction
Rm: S1 → product(s), we have am(x) = cmx1.
Based on the fundamental premise (1), Gillespie devel-

oped an exact SSA to simulate the occurrence of every reac-
tion when the time evolves [1]. However, the exact SSA re-
quires huge computation, when the system population and/or
the number of reaction channels are relatively large. To re-
duce computation burden, Gillespie further developed the τ -
leap method that will be described in the following.

2.1. The Poisson τ -leap method

The τ -leap method attempts to accelerate stochastic simula-
tion by allowing each reaction channel to re more than one
times during a time interval of duration τ [2, 3]. The deter-
ministic value τ is also referred to as the step size of a leap
and is selected to satisfy the following leap condition [2, 3]:

C1 The change in the state during [t, t + τ ] is so slight that
no propensity function will suffer an appreciable change in
its value, i.e., am(X(t′)) ≈ am(x), ∀t′ ∈ [t, t + τ ], ∀m ∈
[1,M ].

Letting Δam(τ ;x)
�
= am

(
X(t + τ)

) − am(x), Gillespie
imposed the following constraint to satisfy the leap condition
C1 [2]:

|Δam(τ ;x)| ≤ εa0(x), ∀m = 1, · · · ,M, (2)

where ε is a prespeci ed error control parameter satisfying
0 < ε � 1. Gillespie derived a formula for selecting τ to
satisfy (2), which is given by Eq. (6) of [3].
Let Km, for any τ > 0, be the number of Rm reactions

that occur in the time interval [t, t + τ ]. If the leap condition
C1 is satis ed, Gillespie showed that Km, m = 1, · · · ,M ,
are well approximated by independent Poisson random vari-
ables with mean am(x)τ [2, 3]. Therefore, Gillespie’s Pois-
son τ -leap SSA executes the following steps during each leap:
calculates τ from Eq. (6) of [3], then generates a realization
ofKm,m = 1, · · · ,M , according to the Poisson distribution,
and updates the state after a leap as follows:

X(t + τ) = X(t) + νK, (3)

where ν = [ν1, · · · , νM ] and K = [K1, · · · ,KM ]T . We
summarize the Poisson τ -leap algorithm as follows [3]:

Algorithm 1 (Poisson τ -Leap)
1. Initialization (setX(0) and t ← 0).
2. Calculate am(x),m = 1, · · · ,M .
3. Calculate τ from Eq. (6) of [3].
4. Generate Km, m = 1, · · · ,M , according to the Pois-
son distribution with mean am(x)τ .

5. Set t ← t + τ , and update the state vector using (3).
6. Go to step 2 until reaching the end time tend.

3. UNBIASED τ -LEAP METHODS

Using three elementary reactions, we demonstrated that Km,
m = 1, · · · ,M generated in all current τ -leap methods,
including the (midpoint) Poisson [3], binomial [4, 5] and
multinomial [6] τ -leap methods, are biased [8]. In order
to improve simulation accuracy, we need to develop an un-
biased τ -leap method. Towards this end, we rst need to
nd the mean of K1, · · · ,KM in each leap, and then gen-
erate K1, · · · ,KM from their probability distributions with
the true mean. The mean of K1, · · · ,KM can be derived
from the CME of the probability mass function (PMF) of K,
P (K; τ), which is given by [9]:

∂P (K; τ)
∂τ

=
M∑

m=1

am(K − em)P (K − em; τ)

− am(K)P (K; τ),

(4)

with initial condition P(0;0)=1, where em is the mth column
of theM × M identity matrix, and

am(K)
�
= cmhm(X(t) + νK). (5)

If we de ne μ(τ) = E[K], then we can obtain the fol-
lowing ordinary differential equation (ODE) from the CME
(4) [8]:

dμ(τ)
dτ

= E[a], (6)

where a �
=[a1(K), · · · , aM (K)]T . If am(K),m = 1, · · · ,M

are linear functions of K, which is true if all reactions are
zeroth or rst order reactions, then E[a] can be written as a
linear function of μ(τ). In this case, we obtain a rst order
linear ODE for μ(τ), which is ready to be solved analytically
or using an ef cient numerical method. However, it is often
that am(K), m = 1, · · · , M are nonlinear functions of K,
due to the reactions with an order higher than 1 involved. In
this case, E[a] involves not only μ(τ) but also the second and
possibly higher order moments of K, and thus, it is dif cult
to obtain μ(τ) by solving (6). To overcome this problem,
we approximate a by its rst order Taylor expansion and then
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show in [8] that (6) can be approximated by the following rst
order linear ODE:

dμ(τ)
dτ

= Fμ(τ) + a0 (7)

where a0 = [a1(0), · · · , aM (0)]T containing the propensity
functions at time t, and F is an M × M matrix whose entry
on themth row andm′th column is given by [8]:

[F]mm′ =
[
∂am(x)

∂x

]T

νm′ , m, m′ = 1, · · · ,M. (8)

The initial condition of the ODE (7) is μ(0) = 0. It is easy to
solve the ODE (7) analytically or using an ef cient numerical
methods to get μ(τ).

3.1. The unbiased Poisson τ -leap method

After we obtain μ(τ), we can generate K1, · · · ,KM using
their distributions with a mean equal to μ(τ). Applying this
idea to the Poisson τ -leap method, we keep steps 1, 2, 3, 5
and 6 in Algorithm 1 unchanged, but modify step 4 as fol-
lows: nd μ(τ) by solving ODE (7) and then generate Km,
1 · · · ,KM , according to the Poisson distribution with mean
μ(τ). We refer to our new τ -leap method as unbiased Poisson
τ -leap method. Strictly speaking, our unbiased Poisson τ -
leap method does not completely eliminate the bias, because
the ODE (7), that is used to obtain μ(τ), is an approxima-
tion of (6). However, the leap step size τ is typically small,
and thus, the approximation error introduced by (7) is also
typically very small. Moreover, very accurate and ef cient
numerical methods for solving (7) are available [10].
The variance of a Poisson random variable is equal to the

mean. Although the unbiased Poisson τ -leap method can re-
move the bias, it may not be able to remove the errors in vari-
ance, if the variance ofKm is signi cantly different from the
mean, which is possibly the case when changes in propensity
functions are relatively large. In [8], we derived the ODE for
the variance of Km, m = 1, · · · ,M , and then developed an
unbiased Poisson/Gaussian τ -leap method to remove the bias
and correct errors in variance. Due to space limitation, we
will not present this method in this paper.

3.2. The unbiased binomial τ -leap method

Applying the same idea of the unbiased Poisson τ -leap
method, we can also remove the bias in the binomial τ -
leap method. Speci cally, we can get the mean of Km, m =
1, · · · ,M , μm(τ), from (7), and then generate Km, m =
1, · · · ,M , from a binomial random variable B(km,max, pm),
where km,max is obtained in the same way as in [5] or [4]
and pm = μm(τ)/km,max. Since the binomial τ -leap method
in [4] cannot handle the case where more than two reaction
channels share certain reactants, we now modify the binomial
τ -leap method of Chatterjee et al. in [5] to obtain the unbi-
ased binomial τ -leap method. More speci cally, the unbiased

Table 1. The average population of four species in the EGFR
signaling pathway
Species Exact SSA Unbiased binomial Binomial
Grb 26007 26006 25986
Sh-G 61516 61517 61537
Shc 5810.8 5810.7 5818.2
Ra 12595 12595 12601

binomial τ -leap algorithm keeps steps 1, 2, 3, 5 and 6 in
Algorithm 1, but changes step 4 as follows: nd the mean of
Km, m = 1, · · · ,M , μm(τ), from (7), set x̃n = Xn(t) and
form = 1 toM reaction channels, do the following:
(a) Find km,max = minνim<0, i∈[1,N ]
x̃i/|νim|�, where


x� denotes the largest integer less than x.
(b) Calculate p = μm(τ)/km,max and generate Km from

the binomial distribution with parameter km,max and p.
(c) Set x̃n = x̃n +νnmKm for n = 1, · · · , N , if νnm < 0.

4. SIMULATIONS

Each cell in a multicellular organism has been programmed
during development to respond to a speci c set of extracel-
lular signals. Such extracellular signals are transduced into
the cell through cell signaling pathways. Signalling path-
ways through the receptor tyrosine kinase (RTK) family of
receptors regulates a wide range of biological phenomena, in-
cluding cell proliferation and differentiation. The epidermal
growth factor receptor (EGFR) is an important member of the
RTK family. A number of computational models have been
employed to investigate the dynamical behavior of the EGFR
pathway.
Here we simulate the EGFR signaling pathway based on

a computational model described in [6, 11]. This model con-
sists of 23 molecular species and 47 reaction channels, which
are listed in Table I of [6]. In our simulations, we used all rate
constants and the initial condition listed in the table I of [6],
except that the initial concentration of the epidermal growth
factor (EGF) was chose to be 1 nM. From the initial concen-
tration of EGF, the initial population of EGF can be found as
1.152 × 106. The initial populations of other species are the
same as those in [6]. We run simulations 104 times, and each
time starts at t = 0 and ends at t = 8 using exact SSA, the
binomial τ -leap method in [5], the midpoint binomial τ -leap
method and our unbiased binomial τ -leap method.
Table 1 lists the mean of the number of molecules for

four species at t = 8. It is seen that our unbiased bino-
mial τ -leap method produces almost the same mean as the
exact SSA, while the binomial τ -leap method produces con-
siderable bias. For other species that are not listed in Table
1, all three leap methods yield almost the same mean as the
exact SSA. Figure 1 depicts the PDF of the number of Grb
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Fig. 1. The estimated PDF of Grb at t = 8

molecules at t = 8 estimated from the results of 104 sim-
ulation runs. It is observed that the PDF obtained from our
unbiased binomial τ -leap method matches that obtained from
the exact SSA, while the PDFs obtained from the (midpoint)
binomial τ -leap method exhibits bias. The histogram dis-
tances between the results of the exact SSA and those of a
leap method was proposed in [12] to measure the simulation
accuracy: a small distance implies high accuracy. Figure 2
depicts the histogram distance of Grb versus CPU time. It is
seen that our unbiased binomial τ -leap method yields much
smaller histogram distance than the (midpoint) binomial τ -
leap method, while requiring almost the same CPU time for
a given ε. For other species, our unbiased binomial τ -leap
method offers smaller or almost the same histogram distance
as the (midpoint) binomial τ -leap method.

5. CONCLUSION

We have developed an unbiased Poisson τ -leap method and
an unbiased binomial τ -leap method for stochastic simulation
of biological systems. Since bias is absent in our new unbi-
ased τ -leap methods, our leap methods can signi cantly im-
prove simulation accuracy, compared to existing τ -leap meth-
ods. Simulation results have corroborated the superiority of
our unbiased τ -leap methods.

6. REFERENCES

[1] D. T. Gillespie, “Exact stochastic simulation of coupled
chemical reaction,” J. Phys. Chem., vol. 81, pp. 2340–
2361, 1977.

[2] ——, “Approximate accelerated stochastic simulation
of chemically reacting systems,” J. Chem. Phys., vol.
115, pp. 1716–1733, 2001.

800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

0.05

0.1

0.15

0.2

0.25

CPU Time

H
is

to
gr

am
 D

is
ta

nc
e

Unbiased bino τ leap
Chatt bino τ leap
Chatt midpoint bino τ leap

Fig. 2. Histogram distance of Grb at t = 8 versus CPU time

[3] D. T. Gillespie and L. R. Petzold, “Improved leap-
size selection for accelerated stochastic simulation,” J.
Chem. Phys., vol. 119, no. 6, pp. 8229–8234, 2003.

[4] T. Tian and K. Burrage, “Binomial leap methods
for simulating stochastic chemical kinetics,” J. Chem.
Phys., vol. 121, pp. 10 356–10 364, 2004.

[5] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis,
“Binomial distribution based τ -leap accelerated sto-
chastic simulation,” J. Chem. Phys., vol. 122, art. no.
024112, 2005.

[6] M. F. Pettigrew and H. Resat, “Multinomial tau-leaping
method for stochastic kinetic simulations,” J. Chem.
Phys., vol. 126, no. 8, Feb. 2007.

[7] X. Cai and X. Wang, “Stochastic modeling and simula-
tion of gene networks,” IEEE Signal Processing Mag.,
vol. 24, no. 1, pp. 27–36, Jan. 2007.

[8] Z. Xu and X. Cai, “Unbiased τ -leap methods for sto-
chastic simulation of chemically reacting systems,” J.
Chem. Phys., submitted, Oct. 2007.

[9] J. Goutsias, “Quasiequlibrium approximation of fast re-
action kinetics in stochastic biochemical systems,” J.
Chem. Phys., vol. 122, art. no. 184102, 2005.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C. Cambidge Univ.
Press, 1995.

[11] B. N. Kholodenko, O. V. Demin, G. Moehren, and J. B.
Hoek, “Quanti cation of short term signaling by the epi-
dermal growth factor receptor,” J. Biol. Chem., vol. 274,
pp. 30 169–30 181, Oct. 1999.

[12] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Ef cient
stepsize selection for the tau-leap simulation method,”
J. Chem. Phys., vol. 124, no. 4, art. no. 044109, 2006.

660


