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ABSTRACT

Advances in the development of models that can satisfactorily de-
scribe biochemical networks are extremely valuable for understand-
ing life processes. In order to get full description of such networks,
one has to solve the inverse problem, that is, estimate unknowns
(rates and populations of various species) or choose models from a
set of hypothesized models using experimental data. In this paper we
discuss signal processing techniques for resolving the inverse prob-
lem of biochemical networks using the stochastic approach based on
Bayesian theory. The proposed methods are tested in simple sce-
narios and the results are promising and suggest application of these
methods to more complex networks.

Index Terms— Inverse problem, biochemical networks,
Bayesian theory, Monte Carlo methods, Cramér-Rao bounds.

1. INTRODUCTION

Biochemical networks describing intra- and inter-cellular processes
(e.g. genetic networks, signal transduction networks, or metabolic
pathways) can be studied using system theory [8]. These systems
are represented by sets of coupled chemical reactions described
by chemical species taking part in the reactions and the respective
reaction rates [1]. Such models are used to understand the dynamics
of the system, its behavior over time, its traffic patterns, why they
emerge and how one can control them [8].

Quantitative studies of biochemical networks are typically car-
ried out numerically by solving a set of coupled differential equa-
tions. These methods are known as deterministic and they have seri-
ous limitations. Under certain conditions, they represent the system
under study inadequately and cannot be used for prediction of con-
centrations of biochemical species. This leads to instabilities par-
ticularly emphasized when some of the reactions in the biochemical
network involve small number of molecules [9]. Stochastic methods,
on the other hand, attempt to improve on the accuracy of the deter-
ministic methods by employing Monte Carlo computations. One can
use them to either simulate specific realizations of the studied pro-
cesses (forward problem) or to obtain estimates of unknowns in the
studied system or to choose models from a set of predefined models
(inverse problem). In the recent past much work has been devoted to
the forward problem and significant advances have been made [7].
The inverse problem has received much less attention.

In this paper we study the inverse problem of biochemical net-
works using the stochastic approach. This includes: (a) estima-
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tion of unknowns (usually number of some of the molecular species
and reaction rates in the system) from limited experimental time se-
ries measurements, (b) derivation of posterior Cramér-Rao bounds
(PCRBs) of the obtained estimates as functions of experimental de-
sign parameters, and (c) model selection. We propose to apply the
Bayesian methodology in all of the tasks and use Monte Carlo-based
methods for implementation.

The remainder of the paper is as follows. The next section
describes the mathematical formulation of the system under the
stochastic framework. In Section 3 the inverse problem is explained
in detail as well as the proposed methodology. Section 4 provides
with simple examples as proofs of concepts of the proposed methods
and Section 5 finishes the paper with some concluding remarks.

2. PROBLEM STATEMENT

In general, we assume that the biochemical network is described by a
set of species X1, Xo, - - -, Xn which take part in reactions R1, Ra,
.-+, Rk, with associated stochastic rate constants ci,c2, - ,Ck
[6, 14]. From a signal processing point of view, we represent the
biochemical network as a discrete-time dynamic state-space model
where the states of the system are composed of number of molecules
of the various species in the network and stochastic rate constants'.
The network is described by two probability distributions, the first
representing the evolution of the network with time, and the second
one, the measurements of some of the species in the network given
the system states. We can formally express the state and observation
equations of the network simply by

state equation p(xt|re—1) (H

observation equation p(yt|ee) 2

where @ = [T1+ T2t -+ TNt C1 cK]T denotes the
state vector at time instant t7, with x, : being the number of
molecules of species X, ¢t =0,1,2,---,7 the discrete time index

and 7 the sampling time interval. Measurements of some features
of the biochemical network, y,, are obtained” (for instance, by
fluorescence spectroscopy [10]) for an interval of duration 7'7. Here
we assume that we have uniform sampling of the data. However, the
methods that we propose do not require uniform sampling.

The general objective is to estimate the unknown state vec-
tor 1.+ based on the discrete-time (and possibly) incomplete ob-
servations yi:¢, where the notation, for example, xi.: means

'Note that other parameters can also be included in the state of the system
if necessary.

2In general, the obtained measurements will be described by models with
nonlinearities [1].
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X1, X2, - ,T:. We note that xo represents the initial value of the
state vector, which is assumed known.>

3. THE INVERSE PROBLEM

The inverse problem of biochemical networks revolves around three
interrelated topics. In the next subsections we explain in detail each
of them as well as the methodology used for solving them.

3.1. Estimation of unknowns in the biochemical network

It is well known that the stochastic rate constants of biochemical
reactions are often not accessible directly through experiments. Most
of the population sizes of the species in the system and their variation
with time are also not available. Therefore, the inverse problem
of estimating them is quite challenging, specially in the context of
stochastic models [11].

From point of view of Bayesian theory, all the information
about the unknowns is quantitatively described by the posterior
density of the unknowns. For example, at time instant ¢7, we have
p(@1:¢|y1:t, o), Where y1.; represents all the measurements up to
tT. With this approach, we also use prior information which is
quantified by the prior distributions of the unknowns. The posterior
of the unknowns is formally written as
3

p(Tie|y1:e, o) o p(yie|zo)p(xi:|xo)

where p(yi:¢|Zo:t) is the likelihood function, and p(z1:¢|xo) is
the prior distribution. The goal is to obtain the complete posterior
distribution of &1.¢.

From this posterior one can construct various types of point
estimates, such as

maximum a posteriori I, = arg Hilvaxp(mt|y1;t, o)
t

Ty :/ﬂitp(ﬂit|y1:t,$0)d$t

minimum mean — square

where 0 < ¢t < T. The posterior distribution also contains
information about the uncertainty of our estimates, and there are
various metrics that can be used to describe it. For example, from
the posterior we can easily construct confidence intervals of the
estimates.

3.2. Computation of the PCRBs

The PCRB serves as a benchmark and provides a metric of how far
our estimator is from optimal performance. Also, the PCRB may
yield information on how to choose parameters of an experiment
so that the accuracy of the estimated unknowns is improved or on
whether a parameter is identifiable from a given experiment design
and the available measurements.

Suppose that the unknowns are the stochastic rate constants
c= [c1 Co, +- cK]T, and the observations are given by y1.7. Then
we can write [13]

E@-c)(e—¢c) > [Ip+Ip)! )
where ¢ is a function of all the observations yi.7, i.e., ¢(y1.7);
Jp is the information matrix obtained from the data and Jp the

3If the initial state vector is not known exactly, the a priori knowledge
about it can be modeled by a probability distribution function.
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information matrix obtained from the prior. The elements of these
matrices are defined by [13]

[ Inp(yi.r|e)

[Unl,;, = dc:0¢; p(yrrle)m(c)dyr.rde
9% Inm(c)
s _ [ 09 In7m(c)
el = / Ocidc; ml(c)de ©

where 7(c) is the prior of the stochastic rate constants ¢. The
diagonal elements of the inverse of Jp + J p represent the minimal
mean-square estimates that can be achieved with any estimator, and
the off-diagonal elements are the cross correlations.

In the case when the unknowns are dynamic and evolve with
time, which is always the case when we estimate changing number of
molecules of species, the number of unknowns increases with time.
For deriving the PCRB in such cases, we use the theory presented
in [12]. There, recursive equations for computing the PCRB of the
states of a discrete-time nonlinear dynamic system are presented.
Almost always, these bounds have to be computed numerically.

3.3. Model selection

The main problem in working with computational models of bio-
chemical networks is uncertainty about the adopted model. How do
we know that the model is correct? Or, when we have two or more
competing models for the same phenomenon, which of the two mod-
els is better?

Let the different models be denoted by M;, [ = 1,2,--- | L.
If all the observed data are given by y1.7 and all the models are a
priori equally likely, according to the maximum a posterior (MAP)
criterion of Bayes’ theory, the best model is the one with the largest
a posteriori probability p(M;|y1.T, xo), i.e.,

M= argnj{?xp(./\/lz\yLT,wo)- (6)
l

Since

p(y1.r|xo, Mi)p(Mi)
p(y1.r|zo)

p(Milyrr, o) = @)
and if the prior probabilities of the models are all equal, we deduce
that for comparison we only need to use p(yl;T\a:o, M), which is
the predictive density of the observations given the model M;. In
order to find this predictive density we need to marginalize all the

state unknowns, or

p(yrr|To, Mi) /p(YI:T‘wO:T7Ml)p(wlzT|fE07Ml)d$1:T
(8)

where p(x1.7|x0, M;) is the prior distribution of the states given
model M; and the initial value of the state vector xo. Obviously,
analytical computation of (8) in any practically interesting situation
is impossible, and therefore we will have to resort to computational
methods based on Monte Carlo simulations.

It is worth pointing out that with this approach we alleviate
the problem of overfitting the data. We only compare models
based on how they predict future observed data, and not those that
have already been used for estimation of the states of the model.
Also, note that the MAP criterion asymptotically corresponds to the
criterion known as minimum description length (MDL), which has
been recently used for selection of models of biochemical pathways
in [2].
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Fig. 1. Left: Tracking the evolution of species X ;. Right: Estimation of the stochastic rate constant c.

3.4. Methodology

The complexity of the models requires the use of Monte Carlo-
based methods [4]. We use Bayesian computational methods and
depending on the addressed problem, they will include Markov
chain Monte Carlo (MCMC) simulation [5], population Monte Carlo
(PMC) sampling [3], and particle filtering (PF) [4].

In the next section we show an example that addresses the three
topics of the inverse problem and when necessary using particle
filtering [4].

4. SIMULATION RESULTS

In this section, we provide basic examples related to the studied
problem.

4.1. An example of estimation

We considered the reaction X; — X ; for which we assumed that
we had measurements of the number of molecules of species X;
taken with a sampling time interval 7. We let, as before, t be a
discrete-time index, where ¢t = 0,1,--- ,7, and we denoted the
measurements of X; by x; . Based on the T' measurements, we
wanted to estimate the unknown rate constant c. For simplicity and
derivation purposes, we assumed that the measurements are perfectly
accurate.

The probability of a reaction of one molecule X;, P(X; Lk,
X; during ), was given by

P(X; 5 X; during7) = 1—e . )

When this probability was small, the likelihood of the number of
molecules of species X; converting to species X; was modeled by a
binomial distribution.

Given that the measurements of X; were x; +,t = 0,1,--- , T,
and that we used a prior of ¢, w(c), defined by the Gamma
distribution with parameters « and (3, that is,

/Ba a—1_ —fc
w(c) = e c>0 10
© = F : (10)
we can obtain the MAP estimate of ¢ readily by solving a nonlinear
equation of c¢. This estimate is a batch estimate of the constant ¢
and in general is not practical because we do not have access to
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accurate number of molecules, x; ;, while the reaction takes place.
A practical alternative is to have observations from which we can
deduce the unknown number of molecules in the reaction. In other
words, besides working with the state equation (1), we also have an
observation equation as in (2).

One methodology for joint estimation of x;: and c is PF.
We carried out a simple simulation experiment to illustrate the
performance of a particle filter that jointly tracks the evolution of
the species and estimates the stochastic rate constant c. In the
experiment, the species were observed with error. The transition
of the state was modeled by x¢+1 ~ p(X¢+1|xt) where p(-) was
a binomial distribution and the measurement of the number of
molecules x; + were modeled by

Yer1 = g(Ti,t41) + Vet1

where v;+1 was noise (or error), and g(-) was a function of the
number of molecules (nonlinear measurements from fluorescence
spectroscopy experiments were obtained [10]). The distribution of
the noise was assumed known.

We considered a system whose initial number of molecules of
X; and X; were set to 1000 and 0, respectively, and where the
stochastic rate constant was ¢ = 1. Figure 1 (left) shows the
evolution of X; in a single simulation run obtained by the exact
method given by Gillespie [6] and the estimation obtained by the
particle filter. It is apparent that the PF algorithm tracks the evolution
of the species X; very accurately and remains locked to the true
value (the curve representing the true values and the curve depicting
the estimates are almost indistinguishable). Figure 1 (right) depicts
the MAP estimate of the stochastic constant rate by the particle filter.

4.2. An example of computation of a PCRB

Here we show the result of the derivation of the PCRB for the
example from the previous subsection, where we had direct counts
of the number of molecules of X; uniformly in time and where the
prior of ¢ was the Gamma distribution defined by (10). We derived

Z 52 L P~
=+ zior? [ f(e)m(c)de

L

where
(1 _ efc‘rT)efcr

f(C) = (1 _ 67‘:7)2
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Fig. 2. Model selection problem — Model 1. Left: Tracking the evolution of species X ;. Right: Decision on model selection.

The PCRB for various values of «, 8 and x; ¢ can be obtained by
numerical integrations.
4.3. An example of model selection

We also illustrate the performance of PF applied to model selection.
We considered a scenario described by two possible models

Model 1:
Model 2:

X; 2 X
X 2 X5 .
X; 20X,

The objective was to decide which model was the true one based
on the observed data. To that end, we simulated a realization of the
system according to Model 1 and we ran the PF on both models.
The result is shown in Figure 2. It is evident that the particle filter
using Model 1 tracks accurately the system of the state (left) and it
provides the answer that Model 1 is the correct one with posterior
probability of almost one.

We repeated the experiment but generating data from Model 2
and similar results as shown in Figure 2 were obtained. The posterior
probability of the correct model was again almost one.

5. CONCLUSIONS

In this paper we present a stochastic approach to resolve the inverse
problem posed in biochemical networks. We discuss methods for es-
timating unknowns, derivation of the posterior Cramér-Rao bounds
of the obtained estimates, and methods for model selection. The ap-
plied methodology is Bayesian and its implementation is based on
Monte Carlo techniques including particle filtering. Future lines of
research include extending the methods for more complicated net-
works as well as application of the methods to real data.
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