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ABSTRACT
A novel approach is presented for the detection and

localization of changing periodicities in symbolic sequences.
Various symbolic sequences like DNA can be modelled as
stochastic processes that exhibit time-varying cyclostation-
arity. The coding regions of the DNA, for instance, exhibit
statistical periodicity with period three. The complexity-
regularized maximum-likelihood estimates are developed in
this paper for the statistical period of symbolic sequences.
The changing periodicities along the sequence are discovered
by using sliding windows. A cumulative sum test is also
presented to detect the change points. The formulation in
this paper avoids any kind of numerical mapping for the
symbolic DNA sequences and does not impose any algebraic
structure.

Index Terms— Symbolic periodicity, finding exons, cy-
clostationarity.

I. INTRODUCTION

SYMBOLIC sequences are time series defined on a
finite set with no algebra. In DNA sequences, eco-

nomic indicator data, and other nominal time series, the
only mathematical structure is the set membership [1]. An
interesting and important behaviour such symbolic sequences
may exhibit is periodicity and finding such periodicities is
fundamental to the understanding and determination of the
structure of the sequences. In genomic signal processing,
locating hidden periodicities in DNA sequences is important
since repetitions in DNA have been shown to be correlated
with several structural and functional roles [2]. For example,
a base (symbol) periodicity of 21 is associated with α-helical
formation for synthesized protein molecules [2] and a base
periodicity of 3 is identified with exons, the protein coding
regions of the DNA. Such investigations also find application
in diagnosis of genetic disorders (like Huntington’s disease
[3]), DNA forensics and reconstructing evolution history [4].
Symbolic periodicities can be classified into homologous,

eroded and latent. Homologous periodicities occur when
short fragments are repeated in tandem. Eroded periodicities
[5] result when some of the symbols in a homologous
periodic sequence get replaced or altered so that the tandem

repeats are imperfect. These may also be observed as indels
(insertions and deletions) in homologous periodic sequences.
Latent periodicities [5] occur when the repeating unit is not
fixed but may change in a patterned way: for instance, a
sequence in which the nth element is always either A or G.
An observed latent period of nucleotides in a DNA sequence
may be (A/C)(T/G)(T/A)(G/T)(C/G/A)(G/A), i.e. the first
nucleotide of a period may be A or C followed by a T or G
and so on.
Symbolic random variables take values on a set called the

alphabet whose elements are called symbols. A symbolic
sequence is defined as a sequence of symbolic random
variables. Most current approaches for detecting periodicities
transform the symbolic sequences into numerical sequences
which defines an algebra on the alphabet [6]. This imposes
a mathematical structure that is not present in the data. For
instance, the mapping of DNA elements (T= 0, C= 1, A= 2,
G= 3) suggested in [7] puts a total order on the set; the
complex representation (A= 1+ j, G= −1+ j, C= −1− j,
T= 1−j) used in [8], [6] implies that the euclidean distance
between A and C is greater than the distance between A
and T. Artifacts of such mappings are reported in [9]. A
good survey of various numerical representations for DNA
sequences is presented in [10]. Most of these techniques are
primarily aimed at the detection of homological periodicities
[11], [8], [9].
In contrast, the formulation in this paper implies no

mathematical structure on the alphabet and presents a general
approach to the detection of the three classes of periodicities
in a maximum likelihood framework. Each symbol of the
sequence is assumed to be generated by an information
source with an underlying probability mass function (pmf).
The sequence is generated by drawing symbols from these
sources in a cyclic manner. Thus, periodicities in the symbols
are represented by repetitions of the pmfs, referred to as
statistical periodicity or strict sense cyclostationarity. The
number of sources is equal to the latent period in the
sequence.
The problem of detecting latent periodicities is formulated

mathematically in the next section. The maximum likelihood
estimates of the period and the distributions of the sources
were developed in [12]. The estimates are improved in this
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paper by incorporating a complexity term with the likelihood
function in Section III. This penalized maximum likelihood
estimator is justified by the application of the minimum
description length (MDL) principle to the model selection
problem. In Section IV the MDL estimates are computed
in sliding windows over various simulated and real DNA
sequences. The series of estimates characterizes the time-
varying behaviour of the sequences.

II. STATISTICAL PERIODICITY

A given symbolic sequence D = D1D2 . . . DN of length
N can be denoted by a mapping from natural numbers to
an alphabet X . For DNA sequences X = {A,G,C,T},
where the symbols denote the nucleotides Adenine, Guanine,
Cytosine and Thymine respectively. Let X be an X -valued
random variable (or information source) with probability
distribution P . Let Xn denote the n-fold cartesian product
of X and xn ∈ Xn denote a sequence of length n. A
probabilistic source is defined as a sequence of probability
distributions P (1), P (2), . . . on corresponding sequence of al-
phabets X 1,X 2, . . . such that for all n, and for all xn ∈ Xn,
P (n)(xn) =

∑
y∈X P (n+1)(xn, y).

If a symbolic sequence D is generated by repeated con-
catenation of realizations of a probabilistic source P (T ) the
statistical period of D is defined to be T . In other words,
a T -periodic cyclostationary sequence D is generated by
T information sources, X1, . . . , XT , in a cyclic fashion.
The random variable Xi takes values on the alphabet X
according to an associated probability mass function Pi; it
generates the jth symbol in X with probability Pi(j) =
P (Xi = Xj) for j = 1, . . . , |X | where |X | is the cardinality
of the alphabet (|X | = 4 for the DNA sequences).
Let T denote the true period and k denote the hypoth-

esized period. The number of complete statistical periods
in an N -symbol long k-periodic cyclostationary sequence
D are M = �N/k�, where �x� denotes the largest integer
less than or equal to x. Define îk = 1 + ((i − 1) mod k),
where (x mod y) denotes the remainder after division of
x by y. Then for 1 ≤ i ≤ N , the symbol Di, i.e. the
ith symbol in the sequence D, is generated by the random
variable X

îk
. The random variables X

îk
for îk = 1, . . . , k

are assumed to be independent. The parameters, period k
and pmfs P1, . . . , Pk of corresponding information sources,
are unknown. The search space for parameter k is the
set B = {1, . . . , N0}, for some N0 < N and for the
pmfs Q(k) = [P1, . . . , Pk] the search space is the subset
Q(k) ⊆ [0, 1]|X |×k of column stochastic matrices (for
Q ∈ Q(k),Qji ∈ [0, 1] and

∑|X |
j=1 Qji = 1 for i = 1, . . . , k).

Conditioned on k, the maximum likelihood estimate of Q(k)

is given as

Q
(k)
ML = arg max

Q∈Q(k)
P (D|Q). (1)

The plug-in MLE for the statistical period can be written as

TML = arg max
k∈B

P (D|Q
(k)
ML). (2)

The maximum likelihood estimates Q
(k)
ML and TML were

developed in [12]. However, as seen from the experimental
results on simulated sequences and real gene data the
estimates tend to overfit the data. To address the problem of
over-fitting, a penalized maximum likelihood estimator is
presented in Section III. The estimator is derived using the
refined minimum description length (MDL) principle. The
penalization corresponds to assuming the universal prior on
the parameters and refined MDL estimator is essentially the
MAP estimator with respect to the universal prior.

III. PENALIZED MAXIMUM LIKELIHOOD
ESTIMATOR

The fundamental idea behind MDL is that more regular
the data is, the easier it is to compress and learn [13].
As in the previous section let D denote the data and let
Q(1),Q(2), . . . ,Q(N0) be the list of class of models or hy-
potheses. Define H = ∪N0

k=1Q
(k). Then the best explanation

of the data D is the hypothesis H ∈ H that minimizes the
description length

L(D|H) = L(Q(k)) + L(D|Q
(k)
ML), (3)

where L(Q(k)) is the length, in bits, of the description of the
model classQ(k) and L(D|Q

(k)
ML) is the length of the descrip-

tion of the data by the best fitting model in the class Q(k).
The term L(D|H) is sometimes referred to as the stochastic
complexity of the data given the model whereas L(Q(k)) is
called the parametric complexity. Clearly, the MDL model
selection involves the trade-off between goodness-of-fit and
complexity.
The second term L(D|Q

(k)
ML) in the two part code, rep-

resents the codelength of the data when encoded with the
hypothesis Q

(k)
ML. Assuming the hypotheses are probabilistic,

the Shannon-Fano code is optimal in terms of the expected
codelength. Thus, L(D|Q

(k)
ML) = − log P (D|Q

(k)
ML), where

P (D|Q
(k)
ML) is the probability of observing D given the

model Q
(k)
ML. The codelength is therefore the negative-log-

likelihood of observing the data D. As derived in [12], the
(j, îk)th element of the matrix Q

(k)
ML is given as

Q
(k)
ML(j, îk) =

1

L

L∑
l=1

1{D(l−1)k+îk
= Xj}, (4)

where 1{·} is the indicator function, îk = 1, . . . , k and
L = M if (Mk + îk) > N , L = (M + 1) otherwise.
The MLE for the probability mass functions of the random

variables is quite intuitive. Simply stated, given the period k,
it amounts to segmentation of the data sequence into k non-
overlapping de-interleaved subsequences. And the pmf of the
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mth information source is given by the relative frequencies
of each symbol. For instance, if the hypothesized statistical
period in a gene sequence is 3 then the MLE of the pmf
of the 2nd information source is given by the empirical
probabilities of nucleotides in the subsequence comprising
of every third symbol, starting with the second.
For the first term in equation (3), following code may

be adopted. First encode k using �log k	 1′s followed by
a 0 which is followed by another �log k	 bits for the
binary representation of k. Note that this a prefix code and
takes 2�log k	 + 1 bits. The parameters of Q ∈ Q(k) are
described by k′ = k · |X | frequencies or probabilities that
are determined by the counts in the set {0, 1, . . . , �N

k
	}, thus

taking k′ log(�N
k
	+1) bits. The total codelength for the code

is therefore

L(H)+L(D|H) = 2�log k	+1+k|X | log�
N

k
	−log P (D|H)

(5)
for H ∈ H. It is clear from the equation above that the MDL
principle yields a penalized maximum likelihood estimate.
The code used here is a universal code and implies a
universal prior on the hypothesis.

IV. TIME VARYING PERIODICITIES
The penalized MLE is applied to various simulated sym-

bolic sequences and real gene sequences. In order to detect
time-varying periodicities in a sequence of N symbols, the
estimates are computed in a sliding window of sizeNw 
 N
with an overlap of Nc symbols between successive windows.
Figure 1 shows results for a simulated 8000-symbols long
DNA sequence that has latent periodicity of period 6 for
subsequences with indices 1− 2000 and 6001− 8000 and is
uniformly random in the middle. Thus there are two change
points in the sequence. The latent period of the periodic
part of the sequence is (A/C)(T/G)(T/A)(G/T)(C/G/A)(G/A),
i.e. it is generated by six information sources, X1, . . . , X6

with X1 generating A or C each with equal probability, X5

generating A, G or C each with probability 1/3 and so on.
The window size was chosen to be 750 symbols and the
overlap was 675 symbols. The description length (Z-axis) is
plotted for the ML hypothesis corresponding to each period
(Y-axis) along the sequence (X-axis). Both change points are
seen in the surface plot. Also the six-periodic behaviour is
evident from the plot as are the subharmonics, the integer
multiples of the true period.
The algorithm was also tested with chromosome 20 of

the human genome [14]. The 9748 base-pair (bp) long
sequence (bp: 22,553,000-22,562,747) contains 1305 bp long
(bp: 22,557,488-22,558,792) protein coding region (exons)
flanked by non-coding parts (introns) on both sides. The
contour plot in Figure 2 shows a latent periodicity of period
three beginning at sliding window number 60 which corre-
sponds to bp number 22,557,427 (Nw = 750, Nc = 675).
The period-3 behaviour of protein coding genes is expected
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Fig. 1. Description length (in bits) for the ML estimate in
Q(k) plotted against period k along the sequence.

since amino acids are coded by trinucleotide units called
codons [6].
The window size Nw determines the usual trade-off

between the resolution and accuracy of the estimates. The
larger the window size, the better the estimates since aver-
aging in the empirical estimator is over more data. On the
other hand, smaller windows give better resolution since the
estimates along the sequence depend only on the symbols
in a small neighbourhood. A problem with poor resolution
is detecting two change points that are very close to each
other. For instance, if the random part of the sequence in
Figure 1 is much smaller than the window size, the change
points may go undetected. A multi-resolution multi-scale
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Fig. 2. Contour plot of description length (in bits) for the ML
estimate in Q(k) plotted against period k along the sequence.
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technique is therefore preferred where various sizes for the
sliding window are used. A coarse search is first performed
followed by a fine search in the regions of interest.
As observed from the plots the periodicity profile of

the sequences changes gradually near the change points
whereas in other parts the profile remains constant except for
small fluctuations due to noisy data. Thus, a statistical test
based on the positive inflection rate over multiple successive
windows can be constructed. Given TML = k, the alternative
composite hypothesis is that the period is no longer k. The
null hypothesis that there is no change is rejected if

Θ
(k)
t = min

m∈{1,...,T}
|Q

(k)
ML,t −Q

(k)
ML,t−m|tot > δTh (6)

where |A − B|tot =
∑

i,j (A(i, j)−B(i, j))
2 is the total

deviation between matrices A and B, δTh is a threshold
and T is the number of successive windows over which
the test is conducted. The test statistic Θ

(k)
t for period

k is the minimum total deviation between ML estimates
for the pmfs in window t and previous T windows. The
formulation in (6) is similar to the change-point problem
in statistics and the test proposed here is based on the
cumulative sum approach. Θ

(k)
t is plotted in Figure 3 for

the simulated latent periodic sequence used in Figure 1. The
jump in Θ

(6)
t at t = 9 corresponds to the change-point at bp

number Nw + 8 × (Nw − Nc) = 1950, giving much better
resolution. The resolution can be further improved upon
by increasing Nc, keeping Nw constant. Note that Θ

(6)
t is

consistently large over transition regions with lobe-width
equal to Nw.
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Fig. 3. Θ(k)
t plotted for the sequence from Figure 1. Θ(6)

t

is plotted in red (Nw = 750, Nc = 600, T = 3).

V. DISCUSSION
Various parts of DNA sequences exhibit characteristic

statistical periodicities. Mapping this behaviour to structural
and functional roles is an important aspect of genomic signal
processing. The investigation is challenging at least in part
due to the lack of an algebraic structure. The approach in
this paper is to model symbolic sequences as nonstationary
random processes on a finite alphabet. The time-varying
nature of symbolic sequences is studied and a uniformly
most powerful test is constructed for detecting the transition
points.

VI. REFERENCES
[1] Wei Wang and Don H. Johnson, “Computing linear

transforms of symbolic signals,” IEEE Trans. Signal
Processing, vol. 50, no. 3, pp. 628–634, March 2002.

[2] E. V. Korotkov and N. Kudryaschov, “Latent periodic-
ity of many genes,” Genome Informatics, vol. 12, pp.
437 – 439, 2001.

[3] The Huntington’s Disease Collaborative Research
Group, “A novel gene containing a trinucleotide repeat
that is expanded and unstable on huntington’s disease
chromosomes,” Cell, vol. 72, pp. 971–983, Mar 1993.

[4] C. M. Hearne, S. Ghosh, and J. A. Todd, “Microsatel-
lites for linkage analysis of genetic traits,” Trends in
Genetics, vol. 8, pp. 288–294, 1992.

[5] E. V. Korotkov and D. A. Phoenix, “Latent periodicity
of DNA sequences of many genes,” in Proc. of Pacific
Symposium on Biocomputing, 1997, pp. 222–229.

[6] Dimitris Anastassiou, “Genomic signal processing,”
IEEE Sig. Proc. Magazine, vol. 18, pp. 8–20, Jul 2001.

[7] P. D. Cristea, “Genetic signal representation and
analysis,” in Proc. SPIE Conf., 2002, p. 77 84.

[8] M. Buchner and S. Janjarasjitt, “Detection and visu-
alization of tandem repeats in DNA sequences,” IEEE
Trans. Sig. Proc., vol. 51, pp. 2280–2287, Sep 2003.

[9] Ravi Gupta, Divya Sarthi, Ankush Mittal, and Kuldip
Singh, “Exactly periodic subspace decomposition
based approach for identifying tandem repeats in dna
sequences,” in Proc. of the 14th EUSIPCO, Sep 2006.

[10] M. Akhtar, J. Epps, and E. Ambikairajah, “On DNA
numerical representations for period-3 based exon pre-
diction,” in GENSIPS, Tuusula, Finland, June 2007.

[11] Andrzej K. Brodzik, “Quaternionic periodicity trans-
form: an algebraic solution to the tandem repeat de-
tection problem,” Bioinformatics, vol. 23, no. 6, pp.
694–700, Jan 2007.

[12] Raman Arora and W. A. Sethares, “Detection of
periodicities in gene sequences: a maximum likelihood
approach,” in GENSIPS, Tuusula, Finland, June 2007.

[13] Peter Grunwald, I. J. Myung, and M. Pitt, Advances
in Minimum Description Length: Theory and Applica-
tions, MIT Press, 2005.

[14] UCSC Gene Sorter, [Online] http://genome.ucsc.edu/.

644


