
BIOLOGICAL EVALUATION OF BICLUSTERING ALGORITHMS USING GENE 
ONTOLOGY AND CHIP-CHIP DATA 

1Alain B. Tchagang, 2Ahmed H. Tewfik, and 1,3Panayiotis V. Benos 

1Dept. of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA 
2Dept. of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA  

3Dept. of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA 

ABSTRACT

In this paper, we propose a new framework for assessing the 
biological significance of the outputs of any biclustering 
algorithm. The framework relies on the p-value computed 
by a Fisher’s exact test on a 2x2 contingency table derived 
from Gene Ontology (GO) enrichment level and chromatin 
immunoprecipitation (ChIP) data enrichment level. We 
illustrate the framework using our recently published Robust 
Biclustering Algorithm (RoBA), the Cheng and Church 
(CC) algorithm, and a well-defined set of yeast cell cycle 
gene expression data and ChIP-chip data. Our evaluation 
also shows that the biclusters identified by RoBA are 
biologically more homogeneous than the ones identified by 
the Cheng and Church (CC) algorithm. 

Index Terms— Biclustering, gene expression, 
chromatin immunoprecipitation, genetic pathways, 
transcription factors 

1. INTRODUCTION 

Biclustering algorithms are widely used to analyze 
gene expression data. The term refers to a distinct class of 
algorithms that perform simultaneous row-column 
clustering and they are able to identify local behaviors of 
the dataset analyzed. Given a gene expression matrix, 
biclustering algorithms are capable of identifying subsets of 
genes that behave coherently across subsets of experimental 
conditions, time points, or tissue samples. By 
simultaneously clustering the rows and columns of the gene 
expression matrix, one can identify candidate subsets of 
conditions that may be associated with specific cellular 
processes that exhibit themselves only on subsets of genes 
that potentially play a role in a given biological process. 
Biological analysis and experimentation could then confirm 
the biological significance of the candidate subsets.  

Since the publication of the first biclustering 
algorithm by Cheng and Church for gene expression data 
analysis [1], several other biclustering algorithms have been 
developed [2, 3, 4, 5, 6]. Fig. 1 for example shows the 
statistics of Pubmed’s articles dealing with the development 
and usage of bi-clustering algorithms in biological 
applications. 

We also refer the reader to [7] for a review on 
biclustering algorithms and their biological applications. 
Although these algorithms have been used to identify some 
interesting patterns in genomics, their results are difficult to 
evaluate. This is a common problem of all clustering 
algorithms, partly because the rules for such evaluation are 
not well established and evaluation datasets are scarce [3].   
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Figure 1: Pubmed’s statistics on bi-clustering since 2000 

This paper presents a new procedure for assessing 
the biological significance of the outputs of any biclustering 
algorithm, based on the Fisher’s exact test. To illustrate the 
evaluation procedure, our recently published biclustering 
algorithm RoBA (Robust Biclustering Algorithm) [6] and 
the Cheng and Church (CC) algorithm [1] are used to 
analyze microarray data to identify statistically significant 
(bi)clusters of co-expressed genes. Subsequently, these 
biclusters are evaluated using two types of external data: 
Gene Ontology (GO) process categories and chromatin 
immunoprecipitation (ChIP) data. GO classifies gene 
products according to their associated biological processes, 
cellular components, and molecular functions in a species-
independent manner (www.geneontology.org). ChIP is a 
well-established methodology used to investigate 
interactions between transcription factor (TF) proteins and 
their genomic DNA targets in vivo [8]. 

Ideally, a good biclustering algorithm will identify 
genes with similar expression patterns. These co-expressed 
genes are expected to be regulated by the same TFs. In 
addition, genes that are co-expressed frequently participate 
in the same biological pathways. In both cases, if the 
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identified biclusters are biologically meaningful, then their 
corresponding sets of genes should be enriched and 
annotated under the same GO categories, involved in the 
same biological pathways, or regulated by the same 
transcription factors.  

2. MATERIALS 

2.1. Yeast Expression Dataset 

The gene expression data used in this study derive 
from the yeast Saccharomyces cerevisiae cell cycle dataset 
[9]. It consists of 2,884 genes sampled in 17 conditions 
(time points) (0 – 160 minutes, 10 minutes interval 
sampling), covering nearly two full cell cycles. The relative 
mRNA abundance values (percentage of the mRNA for a 
gene compared to all mRNAs) were transformed by scaling 
and taking the logarithm x  100 log10(105x) and the result 
was a matrix of integers in the range between 0 and 600. 
(The transformation does not apply to the values 0 and null 
element -1) [1]. 

2.2. Yeast Chromatin Immunoprecipitation Dataset 

The ChIP-chip dataset we used here derives from 
the Lee et al. study [10] on the association (or not) of 113 
yeast TFs with the promoters of every gene in the yeast 
genome. It corresponds to a 6270 x 113 dataset, where the 
rows represent the yeast genes, and the columns the 113 
TFs. The entries of the matrix correspond to the p-value of 
the association of a given TF to the promoter of the 
corresponding gene. In this study, we used a p-value
threshold of 1.0e-03 to discretize the data as in [10]. In 
other words, TF-gene association values of 1.0e-03 or less 
correspond to 1 (i.e., the gene is regulated by the 
corresponding TF) otherwise correspond to 0. 

3. METHODS 

Biclusters with coherent behavior (see below) were 
identified from the set of gene expression data described 
above using RoBA, our recently published algorithm [6] 
and the Cheng and Church (CC) algorithm [1]. Biological 
assessment of the biclusters was then performed using GO 
annotations (www.yeastgenome.org) and a published ChIP-
chip dataset [10]. 

3.1. Robust Biclustering Algorithm (RoBA) 

Given an N x M gene expression matrix A = [anm]
with set of rows or genes G = {g1, …, gN} and set of 
experimental conditions or columns C = {c1, …, cM}, a 
bicluster B = [bij] is any submatrix of A whose entries 
follow a specific pattern.  Biclusters can be classified into 
five distinct categories: (a) constant biclusters, (b) biclusters 
with constant values along rows, (c) biclusters with constant 

values on columns, (d) biclusters with coherent values, and 
biclusters with coherent evolutions [7].  Biclusters with 
coherent evolutions are unique in that they focus on the 
behavior of the genes across subsets of conditions. Our 
focus here, and indeed that of most researchers, is on 
finding subsets of genes that are upregulated or 
downregulated across subsets of conditions irrespective of 
their actual expression values. Finding such biclusters 
provides a starting point for elucidating genetic pathways.

RoBA, the biclustering algorithm we presented in 
[6], is capable of extracting any type of biclusters mentioned 
above from a given set of gene expression data in a timely 
manner. Since the focus of this paper is on the biological 
evaluation of the biclusters and not the algorithm itself, we 
refer the reader to [6] for the algorithmic details.  

3.2. Biological Assessment of Biclusters 

The biological role of the genes in the biclusters 
was assessed using two statistical criteria: GO process 
enrichment level and TF-gene association enrichment level. 

3.2.1. Gene Ontology (GO) assessment 
The significance of a GO process enrichment in a 

given bicluster can be computed using the Fisher’s exact 
test on a 2x2 contingency table. The p-value of this test can 
be calculated using the hypergeometric distribution. Let N
denote the total number of unique genes on the microarray, 
K(g)=K the total number of genes that are in the GO process 
category (g) of interest, and I(B)=I the number of genes 
assigned to a bicluster B. Then, the probability of seeing n
or more genes in the intersection of the GO category of 
interest g and the bicluster B is: 

I
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K

p                                                    (1) 

3.2.2. ChIP-chip assessment
The same idea applies to the statistical analysis of 

the ChIP-chip data enrichment. Now, K is the total number 
of genes a certain TF is associated with. Then, the p-value
of observing n or more genes in bicluster B being associated 
with the given TF of interest can be computed using (1) 
above.

4. RESULTS 

We ran RoBA on the above gene expression 
dataset. We first filtered out genes with missing values and 
genes whose expression level did not change significantly 
during the time course. RoBA yielded four dominant 
biclusters in the dataset under the whole time course 
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experiments (Fig. 2). Each bicluster had more than 40 genes 
under all 17 conditions (time points). Note that, since we are 
dealing with time series gene expression, the sequential 
order of the time course is very important. 

The biological significance of these four dominant 
biclusters was evaluated using biological (external) data as 
described in the Methods section.  
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Figure 2: The four dominant bicluster profiles 

Biological assessment through statistical analysis 
of the GO category overrepresentation in the four biclusters 
was assessed using the online yeast GO Term Finder tool 
(www.yeastgenome.org). This tool calculates p-values of 
the observed data using the hypergeometric distribution 
(Eq. 1) with Bonferroni correction for multiple testing. All 
categories depicted as statistically overrepresented in the 
identified biclusters have some relation with the cell cycle 
(Table 1). In fact, the most significant GO term processes 
identified for bicluster I is “cell cycle”, with a p-value = 
4.2e-12. Furthermore, 94% of the genes in bicluster II 
participated in some “cellular process” (p-value=1.6e-04). 
Although more than 20% of the genes in bicluster IV are of 
unknown function, another 50% of its genes were involved 
in “regulation of metabolic process” (p-value = 7.9e-05. ) as 
calculated by the “FuncAssociate” function 
(http://llama.med.harvard.edu/cgi/func/funcassociate). We 
note that the genes with unknown functions in bicluster IV 
may also be involved in “regulation of metabolic process”, 
although further experimentation is required to validate this. 

Table 1: Bicluster evaluation using Gene Ontology  

Biclusters No. of 
genes Top GO term 

percentage of 
genes in 
category 

P-value 

Cell cycle 45.8% 4.2e-12 I 48 DNA replication 31.2% 5.9e-13
Translation 58.0% 2.1e-15 II 51 Cellular process 94.0% 1.6e-04 
Translation 62.0% 1.1e-15 III 43 Biosynthetic proc. 67.4% 4.0e-11 

IV*, ** 47 Reg. of Meta. proc 50.0% 7.9e-05 
* More than 20% genes of unknown function, **FuncAssociate results 

We also evaluated our biclustering algorithm using 
the published yeast ChIP-chip dataset on 113 TFs. Each of 
the 113 transcription factors in this dataset was tested for 
target over-representation in each of the four biclusters 
using the Fisher’s exact test described above. The results are 
shown on Table 2.

Table 2: Bicluster evaluation using ChIP data  

Biclusters
TFs I II III IV
ASH1 2.0e-02 
CIN5 1.0e-02 
FHL1 3.3e-19 1.1e-22 
FKH1 6.0e-02 
FKH2 4.0e-02 3.1e-02 3.9e-02 
GAT3 9.1e-02 7.0e-02 
HAP4 7.9e-02 
HIR1 2.2e-02 
HIR2 1.1e-02 
MBP1 3.8e-20 
MCM1 2.4e-02 
MSN1 9.4e-04 
NDD1 2.9e-02
PDR1 8.9e-02 
RAP1 5.4e-10 4.2e-11 
RLM1 2.7e-02 
SKN7 2.9e-02 
SMP1 9.1e-02 
SRD1 8.9e-02 
SWI4 1.1e-15 1.1e-02 
SWI6 7.3e-25 2.3e-02 
YAP5 6.2e-06 

Transcription factors MBP1, SWI4 and SWI6 have 
significantly overrepresented number of target genes in 
bicluster I. Notably, these three TFs participate in the two 
major transcription complexes regulating G1/S transition: 
MBF (MBP1/SWI6 heterodimer) and SBF (SWI4/SWI6 
heterodimer) [11]. So bicluster I may contain the genes that 
participate in the G1/S phase transition. Although not so 
dramatic, the p-values for TFs FKH1, FKH2 and MCM1 in 
bicluster IV are also significant. These TFs are known to be 
key regulators of the G2/M transition [12]. Interestingly, the 
FKH2/MCM1 regulated genes need NDD1 to proceed with 
the G2/M transition, since FKH2 and MCM1 remain bound 
to their targets throughout the cell cycle [12]. 

Biclusters II and III are the most similar of the four 
in terms of gene expression profile (Fig. 2), GO category 
association (both are associated with “translation”, Table 1)
and TF-gene association (both contain overrepresented 
motifs for FHL1 and RAP1 TFs, Table 2). FHL1 TF is 
known to regulate exclusively the expression of ribosomal 
protein genes and that its function depends heavily on 
RAP1 [13]. Their target ribosomal protein genes are 
important components of the cell cycle and constitute a 
large component of the GO category “translation”, common 
to both biclusters. Despite their similarities, we note that 
MSN1 TF (generally involved in response to nutrient 
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limitation) appears to have overrepresented target genes 
only in bicluster II, whereas transcription factor YAP5 
appears to have overrepresentation target genes only in 
bicluster III.  These are also the only biclusters with 
overrepresented motifs for these TFs. It could be that these 
TFs regulate the majority of the genes in the corresponding 
biclusters that seem to belong to the “cellular process” (94% 
of bicluster II genes) and “biosynthetic process” (67.4% of 
bicluster III genes) GO categories (Table 2). Since not 
much is known about the target genes of these two TFs, 
further experimentation is required to explain their role in 
yeast cell cycle. 

We also compared the evaluation results of the 
RoBA identified biclusters to that of the biclusters identified 
by the CC algorithm (Fig. 3). For consistency, we only 
picked the four best (best = low mean squared residue) CC’s 
biclusters under 17 conditions as mentioned on their website 
(http://arep.med.harvard.edu/biclustering/).  We performed 
analysis of biological significance on the four top biclusters 
identified by each technique using GO annotations and TF-
gene association as described above. A particular bicluster 
was significant if the p-value of the GO category or TF-
gene association was smaller than a specified threshold. As 
shown on Fig. 3, the biclusters identified by RoBA are 
biologically more meaningful than the ones identified by the 
CC algorithm, using the above two criteria. 

Figure 3: Comparison of RoBA with Cheng and Church’s algorithm

5. CONCLUSION

In this paper, we evaluated the biological 
significance of our recently published algorithm (RoBA) 
using two main criteria: GO process category enrichment 
level and ChIP-chip data enrichment level. (Bi)clustering 
was performed on a well-defined yeast cell cycle gene 
expression dataset. GO enrichment and TF enrichment 
analysis showed that our algorithm is able to identify 
statistically significant and biologically important patterns 

from a given set of gene expression data. The framework we 
used in this study to evaluate the biological significance of 
biclusters can be used as a tool to test and to evaluate any 
type of clustering algorithms in the future. 
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