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ABSTRACT

Due to experimental constraints, most microarray observa-
tions are obtained through irregular sampling. In this paper
three popular spectral analyzing schemes, i.e., Lomb-Scargle,
Capon and the missing data amplitude and phase estimation
(MAPES), are compared in terms of their ability and effi-
ciency to recover the periodically expressed genes. The in sil-
ico experiments based on microarray measurements of Droso-
phila Melanogaster not only verify half of the published cell-
cycle genes, but also corroborate genes that behave periodi-
cally in Human Hela time series experiments.
Index Terms— Spectral analysis, Genetics, Biological Sys-

tems

1. INTRODUCTION

The eukaryotic cell cycle is an echelon of molecular-level
events that lead to a cell dividing into two daughter cells.
The transcriptional events in the cell cycle can be quantita-
tively observed by measuring the concentration of messenger
RNA (mRNA) via microarray experiments. The sampled time
series data obtained from microarray are: of small sample
size,unevenly sampled, characterized by missing time points,
highly corrupted by experimental noise. These demand treat-
ment of the data with robust stochastic analysis.
Quantitative analysis of microarray experiments reveals

the genes involved in cell-cycle. Giurcaneanu [1] explored the
stochastic complexity of the detection mechanism of periodi-
cally expressed genes. Ahdesmaki [2] implemented a robust
periodicity testing procedure based on the non-Gaussian noise
assumption. Bowles [3] compared Capon and robust Capon
methods in terms of their ability to identify a predetermined
frequency. The majority of current works deal with evenly
sampled data, and missing data points are usually filled by
interpolation in the time domain or are disregarded from the
analysis when a large proportion of samples are missing.
The last decades have witnessed an increased interest in

analysis of unevenly sampled data sets. The harmonics ex-
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ploited in DFT are no longer orthogonal for uneven sampling.
However, Lomb and Scargle [4] demonstrated that a phase
shift suffices to make the sine and cosine terms orthogonal
again. Stoica [5] updated the traditional Capon method to
cope with the irregularly sampled data. Wang [6] developed
missing-data amplitude and phase estimation (MAPES) by
employing the Expectation Maximization (EM). In this paper,
we analyze the performance of Lomb-Scargle, Capon, and the
MAPES and answer the following questions: do technically
more sophisticated schemes, like MAPES, achieve a better
performance on real biological data sets, and is the sacrifice
in efficiency by advanced methods justifiable?
Drosophila will be serving as our research target. It is a

simple organism, though with 75% of human diseases, and
50% of its proteins have human analogs. These make it an
ideal model for human diseases. In the literature, most of the
computational methods for discovering periodic genes have
been targeted either to yeast or human, mainly due to ear-
lier publications of their data sets. However, in the case of
Drosophila most works were conducted through experimental
biological methods, and the computational analysis have not
been fully explored for the detection of periodically expressed
genes. Through intense computer simulations, for each of the
investigated spectral estimation methods, we have identified
150 cyclic genes each for embryonic and pupal stages. 50%
of published genes that are involved in cell cycle were veri-
fied. The detected cyclic genes in Drosophila were also dis-
covered to be periodic in Human Hela. Our results not only
illustrate the strength of the investigated spectral estimation
methods for unevenly sampled data sets but also shed light on
cross species genomic research on the cell cycle.

2. METHODS

In this section the Lomb-Scargle periodogram, Capon method
andMAPES approach are introduced and compared. Detailed
derivations are omitted. As a general notational convention,
matrices and vectors are represented in bold characters, while
scalars are denoted in regular fonts.
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2.1. Lomb-Scargle Periodogram

Given N time-series observations (tl, yl), l = 0, . . . , N − 1,
where t stands for the time tag and y denotes the sampled
expression of a specific gene, the normalized Lomb-Scargle
periodogram for that gene at angular frequency ω is

ΦLS(ω) =
1

2σ̂2

(∑N−1
l=0 [yl − ȳ]cos[ω(tl − τ)]

)2

∑N−1
l=0 cos2[ω(tl − τ)]

+
1

2σ̂2

(∑N−1
l=0 [yl − ȳ]sin[ω(tl − τ)]

)2

∑N−1
l=0 sin2[ω(tl − τ)]

,

where ȳ and σ̂2 stand for the mean and variance of the sam-
pled data, respectively, and τ is defined as:

τ =
1
2ω

atan

((
N−1∑
l=0

sin(2ωtl)

)
/

(
N−1∑
l=0

cos(2ωtl)

))
.

For evenly sampled data, the sampling interval Δ can be ex-
pressed as

Δ = tl+1 − tl = (tN−1 − t0)/(N − 1), l = 0, . . . , N − 2.

The highest frequency, i.e. the Nyquist frequency, is 1/(2Δ).
Beyond this limit, the computed spectra repeat. For unevenly
sampled data, let δ be the greatest common divisor (gcd) for
all intervals tk − tl (k �= l), the highest frequency that should
be searched is fmax = ωmax/(2π) = 1/(2δ). The number of
probing frequencies is Ñ = (tN−1−t0)/δ, and the frequency
grid can be defined as ωlδ = 2πl/Ñ , l = 0, . . . , Ñ−1. Notice
further that the spectra on the front and rear halves of the fre-
quency grid are symmetric since the microarray experiments
output real values.

2.2. Capon Method

Recently, the Capon method has been updated to cope with
the presence of irregular samples [5]. The order of auto-
regressive model or the bandwidth of the capon filter is as-
sumed to be N0. The ancillary vector is defined as a(ω) =(
1 ejω · · · ejω(N0−1)

)T . The largest value for N0 is �(Ñ −
1)/2� for the Capon method to be solvable. An estimate of
the autocorrelation matrix R̂ can be obtained from the Lomb-
Scargle periodogram. It can be represented by

R̂ =
1

Ñδ

Ñ−1∑
l=0

a(ωlδ)aH(ωlδ)ΦLS(ωl).

The Capon power spectral estimate at frequency ω is given by

ΦC(ω) = 1/
(
aH(ωδ)R̂−1a(ωδ)

)
.

2.3. MAPES Method

Irregular sampling can be treated as a case of missing data
as long as the sampling time tags share a greatest common
divisor. This constraint is satisfied in most biological exper-
iments and published data sets. The missing-data amplitude
and phase estimation (MAPES) method, proposed in [6], is a
non-parametric spectral estimation approach. It is robust to
model errors and achieves a better spectral resolution. How-
ever, the exploitation of the expectation maximization (EM)
algorithm sacrifices its computational efficiency.
The data, yl, l = 0, . . . , Ñ , are assumed to be sampled

uniformly, however, onlyN data points are available and there
are Ñ − N missing data points. Noticeably Ñ still conforms
to the previous definition. The gene expression signal with
frequency ω can be modeled as

yl = α(ω)ejωl + εl(ω), l = 0, . . . , Ñ − 1, ω ∈ [0, 2π],

where α(ω) represents the complex amplitude of the sinu-
soidal component and εl(w) denotes the residual term. Em-
ploying the EM algorithm, MAPES tries to iteratively assess
the missing data, and meanwhile to update the estimation of
spectra and error.
The data vector y = (y0, · · · , yÑ−1)

T can be split into L
overlapping subvectors, each with dimensionM×1, and L =
Ñ − M + 1. These subvectors constitute the enhanced data
vector ỹ (LM × 1), which assumes the following expression

ỹ = (ỹ0 · · · ỹL−1)
T = Uγ + Vμ,

where γ (N × 1) and μ ((Ñ − N) × 1) represent the avail-
able and missing data, respectively, and U (LM × N) and
V (LM × (Ñ −N)) denote their selection matrices, respec-
tively. Alternatively, givenU,V and ỹ, the data vectors γ, μ
can be computed in the least-squares (LS) sense as follows

γ = (UT U)−1UT ỹ = Ũ†ỹ, where Ũ† = (UT U)−1UT ,

μ = (VT V)−1VT ỹ = Ṽ†ỹ, where Ṽ† = (VT V)−1VT .

The residual vector and its covariance matrix are next defined

el(ω) = (εl(ω) εl+1(ω) · · · εl+M−1(ω))T
,

Q(ω) = E
(
el(ω)eH

l (ω)
)
,

where E(·) denotes the expectation operator, and in practice
is replaced by a sample mean estimator. The following two
notations are also required:

ρ(ω) =

⎛
⎜⎝

ejω0a(ω)
...

ejω(L−1)a(ω)

⎞
⎟⎠ ,D(ω) =

⎛
⎜⎝

Q(ω) 0
. . .

0 Q(ω)

⎞
⎟⎠ .

In the ith EM iteration, the probability density function
(PDF) of the missing data vector μ conditioned on the avail-
able data γ and other context parameters is complex Guassian
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with mean and variance denoted by (b,K) as follows

bi(ω)= ŨT ρ(ω)αi(ω)

+ŨT Di(ω)Ṽ
(
ṼT Di(ω)Ṽ

)−1(
γ−ṼT ρ(w)αi(w)

)
,

Ki(ω)= ŨT Di(ω)Ũ

− ŨT Di(ω)Ṽ
(
ṼT Di(ω)Ṽ

)−1

ṼT Di(ω)Ũ.

Then the estimates for spectral magnitude α(ω) and residual
matrixQ are updated in terms of equations

αi+1(ω)=
aH(ω)S−1(ω)Z(ω)
aH(ω)S−1(ω)a(ω)

,

Qi+1(ω)=S(ω)+(αi+1(ω)a(ω)−Z(ω))(αi+1(ω)a(ω)−Z(ω))H

where the auxiliary matrices are defined as follows

(z0 · · · zL−1)
T =Uγ + Vb(ω), Z(ω)= 1

L

∑L−1
l=0 zle

−jωl,

S(ω)= 1
L

∑L−1
l=0 Γl + 1

L

∑L−1
l=0 zlzH

l − Z(ω)ZH(ω).

where Γ0, · · · ,ΓL−1 areM ×M sub-block matrices located
on the main diagonal of matrixUKUT. Finally, the MAPES
estimator can be expressed as ΦMAPES(ω) = |α(ω)|2/Ñ .

2.4. Periodicity Test

Based on the obtained power spectral density, each gene is
classified as either cyclic or non-cyclic gene. Null hypothesis
is formed to assume that the measurements are generated by
a Gaussian noise. For a general periodogram or power spec-
tral density estimator Φ(ω), Fisher’s test can be exploited to
examine the significance of the detected peak. The Fischer’s
test statistic is defined as

T =
(

max
1≤k≤N0

Φ(ωk)
)

/

⎛
⎝N−1

0

∑
1≤k≤N0

Φ(ωk)

⎞
⎠ ,

where N0 = �(Ñ − 1)/2� since the spectra on the defined
frequency grid are symmetric. The asymptotic p-value for de-
tecting the largest peak is given by P (T > t) = 1− e−N0e−t

.
A rejection of the null hypothesis based on a p-value thresh-

old implies the power spectral density contains a frequency
with magnitude substantially greater than the average value.
This indicates the time series data represent a periodic signal
and the corresponding gene is cyclic in expression. Notice
also that more accurate estimation methods for the p-values
exist. However, we will exploit the asymptotic values. A uni-
versal p-value threshold is impossible to be determined for
variable sample sizes. The rank of genes ordered by their p-
values is of additional importance and it helps to hedge the
risk of dichotomous decisions. The asymptotic p-values will
not change gene ranks and will be computed just as a valuable
reference information.

For the Lomb-Scargle periodogram, ΦLS(ω) is exponen-
tially distributed under the null hypothesis [4]. However, this
exponential distribution is not applicable for a general power
spectral density. Therefore, Fisher’s test is employed to per-
form the comparison among different spectral schemes. Our
simulation results also show that, for Lomb-Scargle periodogram,
the gene ranks generated by Fisher’s test do not differ much
from that produced by the exponential distribution. Finally,
we remark that other periodicity detection tests exist,such as
the robust Fisher test, the likelihood ratio test and the χ2 test.

3. RESULTS

Our in silico experiments are performed on the Drosophila
data published by Arbeitman [7]. The RNA of 4028 genes
were measured with 75 sequential samples through embry-
onic, larval, pupal and adulthood. The pupal and adult stages
are excluded from analysis because they present too small
sample sizes to be of considerable value.
The simulation recognized several patterns. For example

the expression of gene CG8199, shown in Fig. 1, implies
obvious periodicity in both the embryonic stage with a fre-
quency about 0.05/hour (period 20 hours) and the pupal stage
with a frequency 0.02/hour (period 50 hours). The expres-
sion period is elongated along the development. This is true
since the life activity slows down when it grows up. All three
schemes successfully detect the periodicity, however, Capon
and MAPES show questionable biases for peak frequency, as
indicated in Fig. 1D. Other common patterns include the facts
that the gene expression keeps increasing or decreasing. Their
spectra possess strong peaks near or at frequency zero.
There are 97 experimentally-verified cell-cycle genes [8].

Among these 97 genes, 41 were measured in Arbeitman’s ex-
periment [7]. For each scheme, our simulation associate all
4028 genes with their periodicity p-values. The top 150 genes
with the smallest p-values are selected and conferred to be
periodic with the highest confidence. The ability of different
schemes to detect periodic genes are examined by comparing
the identified 150 cyclic genes with the published 41 genes.
As illustrated in Fig. 2, Lomb-Scargle and Capon share more
than 38% of all identified genes. The overlapping between
any two schemes is larger for embryonic data because of the
larger sample size. However, for the pupal data with small
sample size, MAPES differs significantly from Lomb-Scargle
and Capon schemes. This illustrates that the sample size plays
a key role in the decisions made by different schemes. In to-
tal, out of the 41 published cell-cycle genes, 15 were recog-
nized from the embryonic data set, while 9 were spotted from
the pupal data. We also identified 6 published genes that re-
main cyclic in both embryonic and pupal stages. For both
embryonic and pupal data sets, Lomb-Scargle is the best for
recovering cell-cycle genes, while Capon achieves a relatively
good performance, and MAPES exhibits poor performance at
discerning periodicity from the available data. This is mainly
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attributed to the very small sample size.
Immediately after fertilization, each of the first 10 divi-

sion cycles of the Drosophila spends around 10minutes. How-
ever, in the available microarray data, the first 13 samples in
the embryonic stage were taken every 30 minutes. Based on
the available measurements, it is impossible to identify genes
that play major roles in the early embryonic stage. There-
fore, combined with a stringent p-value threshold, a portion
of published 41 genes could not be recovered.
A gene’s periodicity need not to hold throughout its life

span, in other words, an embryo-periodic gene can lose its
periodicity in the pupal stage and vice versa. Actually, it has
been discovered that different genes control the cell cycle at
different developmental stages. Our simulation results also
verify this property. A comparative genomic study is also
performed. By comparing the Drosophila data set with the
Human Hela cyclic gene list published in [9], we find that
77 cyclic Human Hela genes also appear in the Drosophila
genome. Out of these 77 genes, 34 of them were measured in
our data sets and the schemes were able to detect 12 of these
genes as being cyclic. Lomb-Scargle and Capon methods still
achieve the best performance. These results show that the
cell-cycle involved genes, together with their functions, are
preserved along the evolution. Therefore, Drosophila does
represent a good model for exploring diseases occurring in
humans.
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Fig. 1. Gene CG8199: (A) embryonic time series; (B) embryonic
spectral. (C) pupal time series; (D) pupal spectral. The spectral
density is normalized over the summation of spectra at all probed
frequencies.

(A) (B)

Fig. 2. (A) Embryonic Venn Graph; (B) Pupal Venn Graph. Each
scheme preserves 150 genes with the lowest periodic p-values. The
number within the parentheses indicates the number of cell cycle
genes that have been published, while the number on top of the
parentheses implies the number of identified genes by the corre-
sponding scheme.
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