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ABSTRACT

Identification of regulatory signals in DNA depends on
the nature and quality of the patterns of representative
sequences. These patterns are constructed from training
sets of sequences by means of probabilistic models that
either assume independence between positions or that
suffer from considerable computational complexity.
We have developed and tested higher order mod-

els that account for significant dependent position pairs
or triads, thereby capturing position-dependent informa-
tion hidden in DNA binding sites. We have evaluated
our algorithm on several data sets, including eukary-
otic and bacterial transcription factor binding sites and
shown that the scores from the higher order representa-
tion of binding sites have significant positive correlation
to the binding affinity scores.

Index Terms— DNA Binding sites, Regulatory sig-
nal, Position weight matrix, Transcription factor

1. INTRODUCTION

Control of transcription and replication depends on the
recognition of specialized DNA sequences by regula-
tory proteins. These specialized sequences, generally
referred to as ”binding sites”, are relatively short seg-
ments of DNA embedded within larger regulatory re-
gions. Over the years, considerable research effort has
been applied to systematically identifying new binding
sites for a given transcriptional regulator or transcription
factor (TF) across a genome [1, 2, 3]. When the genome
sequence of an organism is available and there are some
known binding sites for a given TF, one can computa-
tionally predict additional sites by scanning the DNA
sequences for short segments sharing common features

THIS WORK WAS SUPPORTED IN PART BY NIH GRANT GM66098 (TO ABK)

with the known sites. The simplest and most widely
used method to do so relies on a position-specific scor-
ing matrix (PSSM), or a position weight matrix (PWM),
surveyed in [1]. In PSSM, DNA binding sites are mod-
eled in such a way that nucleotides at each position of
the site contribute independently to the binding. The
PSSM matrices are constructed from the alignment of
known binding sites which have been identified exper-
imentally. The PSSMs are 4 × L matrices (L is the
length of the sites) with rows indexed by nucleotide i ∈
{A, T, C, G} and columns representing positions j ∈
{1, ..., L}. The entries of the matrix are the frequen-
cies of the occurrences of each nucleotide at each posi-
tion. The elements of position weight matrix, M1, are
log-odd values which are calculated as wi,j = log(fi,j

pi
),

where fi,j’s are entries of PSSM matrix and pi is the
probability of observing the symbol i in a genome or a
background model. Then, the weight matrix can be used
to calculate the score of DNA sequence, Y = y1, ..., yL,
by S(Y |M1) =

∑L
j=1 wyj ,j .

There are two main concerns with the above method.
First, experimental evidence [4] suggests that the as-
sumption of independent contribution of each position
to the overall binding affinity is often not valid. Second,
due to the choice of the score threshold, this method
suffers from a high false positive rate and also misses
some true sites. This indicates the necessity of con-
structing a comprehensive model which includes as
much information as possible from both consensus and
non consensus positions to represent the binding sites.
The dependency assumption between nucleotides has
been investigated through modification of the PWM
in [2], and by means of probabilistic models in [3, 6].
It has been shown that accounting for the dependency
structure of binding sites increases the specificity and
prediction power of the pattern-matching algorithms,
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and results in a more accurate prediction of protein-
DNA binding affinity. In this paper, we present a new
algorithm for constructing higher order position weight
matrices which accounts for the position-specific de-
pendencies between nucleotides in the sites. Higher
order matrices can be constructed for dinucleotides or
trinucleotides over the significant dependent adjacent
and non-adjacent position pairs or triads. We used our
model to analyze eukaryotic and bacterial transcription
factor binding sites as well as confirming the improved
performance of the model using independently obtained
experimental data.

2. MODELING BINDING SITES USING HIGHER
ORDER PWMS

We model sequences of binding sites using PWMs of
the first-, second- and third- order. Hereafter, by the sec-
ond and third-order matrices, or models, we mean that
position weight matrices are defined for dinucleotides
and trinucleotides. In constructing these matrices we
consider not only the dependency between adjacent nu-
cleotides but also dependencies between non-adjacent
nucleotides. A second-order PWM is a 16 × L2 matrix,
M2, where L2 is the number of pairs of dependent po-
sitions among the total number of

(
L
2

)
pairs. Similarly,

a third-order PWM is 64 × L3 matrix, M3, where L3

is the number of triads of nucleotides of dependent po-
sitions having significant dependency chosen from the
total number of

(
L
3

)
triads. Pearson’s χ2, Chi-square,

test statistic is used to find which pairs or triads are sig-
nificantly dependent. Therefore, the Null hypothesis for
our test is that nucleotides at positions i and j or for
triads nucleotides at positions i, j and k are indepen-
dent. Let fi(x) be the observed count of nucleotide x
at position i for a given training set of N sequences and
Gi,j(x1, x2) be the joint observed count of occurrence
of nucleotide x1 at position i and nucleotide x2 at posi-
tion j. Then the expected count of nucleotides x1 and x2

occurring jointly at positions i and j is Ei,j(x1, x2) =
fi(x1)fj(x2)/N . Let X = {A, T, C, G} then, the χ2

value for positions i and j is defined as

χ2(i, j) =
∑

x1∈X

∑

x2∈X

(Gi,j(x1, x2) − Ei,j(x1, x2))2

Ei,j(x1, x2)
.

The χ2 value for triad (i, j, k) can be defined in a similar
way using joint observed count and expected count of
trinucleotides occurring at triad (i, j, k).

We compute the p-values for χ2 values to choose
significant pair and triad candidates to form PWMs.
Low p-values corresponding to large χ2 values indicate
some sort of dependency between nucleotide positions
forming respective pairs and triads. In all simulation
cases we used the p-value of 0.05 to select significant
dependent position pairs and triads.
Having chosen the candidate pairs or triads, the en-

tries of matrices M2 and M3 will be log-odd values
of the observed frequency of dinucleotides or trinu-
cleotides in dependent positions calculated from train-
ing set and that of background model. Then, depending
on the information content of each matrix one can select
the matrix with higher information content to compute
the score for a given sequence Y . One can also build a
combined model using weighted average of the normal-
ized scores calculated from each matrices,

S(Y |M) =
∑3

i=1 ωiŜ(Y |Mi)

whereM is a combined model, Ŝ(Y |Mi) is the normal-
ized score of sequence Y from position matrix of order
i, and ωi ≥ 0 with

∑3
i=1 ωi = 1, are the coefficients

weights, which can be estimated from training data as
follows. Let X be the set of m known binding sites for
the transcription factor F and ω = [ω1, ω2, ω3] be the
vector of coefficients weights (we only included matri-
ces up to order 3) such that,

∑3
i=1 ωi = 1. Then one can

choose ω∗ to be

ω∗ = arg max
ω

∑

y∈X

3∑

i=1

ωiŜ(y|My
i ).

Here My
i is the position weight matrix of order i con-

structed from all known binding sites in X excluding y.
Our analysis has revealed that when one of the mod-

els performs substantially better on the training set, that
model can be used for prediction of new sites in the
genome and it would have prediction power compara-
ble to that of the combined model. In the following due
to space limitation we only compare the performance of
individual matrices.

3. RESULTS

To assess the performance of our algorithm and to check
the richness of the higher order models in capturing the
dependency structure of binding sites we used the JAS-
PAR [7] data set of eukaryotic transcription factor bind-
ing sites matrices and E. coli transcription factor LRP’s
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Fig. 1. Cumulative distribution function of information content of the
PWM of the first, second and third-order for selected TFs in Jaspar data set.

expression and binding data. Since the information con-
tent for higher order models of the sequence elements
with very small number of known sites is low, we ap-
plied our model to 77 TF’s with the number of known
sites greater than 15 in JASPAR data set.

3.1. The learning procedures for JASPAR data set

We compared the performance of the models for each TF
in data set separately by the following procedure. We
ranked the scores of the known sites among the scores
for random segments. This provided us with the measure
of falsely discovered sites, which had higher scores than
the known sites. For each transcription factor’s binding
site we calculated the rank of its score for each model.
Let r(Y |Mi) be the rank of the site Y when the model
i is used. For each TF, we computed the representative
rank by averaging the ranks of all known sites, R(Mi) =

1
NFj

∑NFj

k=1 r(Yk|Mi) for transcription factor Fj having
NFj known sites. A model is considered to be better for
a TF if its corresponding average rank is smaller than
that of other models. We assumed the rank difference
is significant if for one model the average rank is more
than 3 fold smaller than that of other models.
In 32 cases out of 77 TFs the second-order model

outperformed the first-order one, the third-order model
performed better than the first-order in 45 cases, and the
third-order model was better than the second-order for
60 TFs. When there were no second- or third-order ma-
trices, we assumed that they performed worse than first-

Fig. 2. Sequence Logo of Lrp binding sites, (a) Logo from whole sites,
(b) Logo of 2 groups of binding sites which showed significant dependencies
at positions 1,3,13 with two different trinucleotides, (c) significant depen-
dencies at positions 4,5,9 (d) significant dependencies at positions 4,9,13 (e)
significant dependencies at positions 2,9,13.

order model in our comparison. This happened for some
TFs, since no position pairs or triads passed the signif-
icance test by the χ2 statistic. We also computed the
information content of all three models (three matrices)
for the selected TFs. Figure 1 depicts the cumulative dis-
tribution function of normalized information content for
three models. It can be seen from the figure that the nor-
malized information content of the third-order model is
higher than that of the second- and first-order model for
the majority of the TFs. This increase in average infor-
mation content is due to dependency between adjacent
and non adjacent positions which fully cannot be cap-
tured using first order PWM and simple Markov models.

3.2. Modeling binding sites of E-coli transcription
factor, leucine responsive protein(Lrp)

We also applied our model on known binding sites for
E-coli transcription factor Lrp to construct the second
and the third-order matrices by selecting significant
pairs and triads. To show how the higher order model
increases the specificity, we identified the top most
significant triad positions and the corresponding trinu-
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cleotides, which contributed to the dependency test. For
each dependent triad, we chose two groups of binding
sites each containing a selected trinucleotide. Figure 2
shows the sequence logo of Lrp binding sites and the
sequence logos of subgroups for the top 4 triads. It is
clear that several positions, which have low informa-
tion content based on the first-order model, have very
high information content in those subgroups that can be
captured with the third-order matrices.
Next for each gene, we scanned 500bp upstream of

the gene and selected a site in a corresponding strand
with the maximal score and ranked all selected sites for
the first and third order models. The median rank of
the collection of the known sites was calculated for both
models. For the known target genes which have more
than one binding site, we ranked only the site which had
the maximal score. From gene expression microarray
data [8], the median rank of 17 Lrp targets is 126. Thus,
while the scores determined by the first-order model
(median rank=1064) were clearly inconsistent with the
observed transcriptional activity of the set, the scores
from the third-order model (median rnak=50) supported
the transcription data. The probability that such consis-
tency between the median transcription and site scores
occurred by chance is less than 1 in 100,000. Moreover,
we found that for sensitivity of above 80%, the lists
of genes were very significantly enriched for transcrip-
tionally affected genes, when we examined the lists of
genes with corresponding sites scored by the third-order
model at different sensitivity cut-offs (Table 1).
We also were interested in seeing if our higher order

model was assigning scores which better capture differ-
ential affinity of a regulator to the sites. To that end we
used the genome-wide binding data for the Lrp protein.
The relative signal intensities for each microarray probe
were obtained as a result of the comparative two-color
hybridization between the DNA sample bound by Lrp
and specifically precipitated by Lrp antibodies and the
DNA sample recovered from the cells lacking Lrp pro-
tein (manuscript in preparation). The normalized log
ratios of the signal intensities from two channels were
calculated and used as binding affinity scores of the
sequences located upstream of the known target genes.
Assuming that Lrp binds in the vicinity of the known
target genes in vivo, we wanted to determine whether
there was any correlation between the binding affinity
score and the corresponding site score for these genes.
For 17 known target genes, interestingly and consis-

Table 1. Significance analysis of predicted sites using gene ex-
pression data

Sensitivity Fraction of expressed genes (%) p-value
1 30 3.3E-18

0.96 25 2.1E-11
0.92 20 1.1E10
0.88 17 1E-7
0.84 15 3.6E-6
0.80 14 1.8E-5

tent with our hypothesis, the scores from the first-order
model did not correlate with the affinity scores, whereas
the scores from the third-order model showed significant
correlation with the affinities (r=0.41, with a p-value of
2.2× 10−3). Moreover, when we removed the two least
transcriptionally responsive genes from the list, dadA
and ompC, the correlation between the site scores from
the 3rd-order model and affinity scores increased to 0.6,
while it did not improve correlation with the 1st order
affinity scores.
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