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ABSTRACT

Based on the correlation between expression and ontology-
driven gene similarity, we incorporate functional annotations
into gene expression clustering validation. A probabilistic
framework is proposed to accommodate incomplete annota-
tions, after establishing a new term-term distance measure
based on graph theory. Comprehensive evaluations are per-
formed on six clustering algorithms. This study is the first to
explore a robust quantitative functional relationship between
clusters of genes. Such indices assess clustering quality in
terms of consistency of annotation information and serve as
new tools for combining biological knowledge with experi-
mental data.

Index Terms— Gene expression, annotation, clustering
validation, Gene Ontology, hypergeometric distribution

1. INTRODUCTION

As one of the most important ontologies within the bioinfor-
matics community, the Gene Ontology (GO) Consortium [1]
is a structured vocabulary containing functional annotations
of gene products. The three GO ontologies are biological pro-
cess (BP), molecular function (MF) and cellular component
(CC), each structured as a directed acyclic graph (DAG) with
nodes representing the terms and directed edges representing
parent-child relationships.
Gene expression clustering has been an active research

area. It aims at identifying co-regulated genes involved in reg-
ulated biological processes or groups that contain functionally
related proteins such as enzymes for a specific pathway. How-
ever, the assignment of a gene to a certain cluster based on
expression and genetic co-regulation based on current knowl-
edge in transcriptomics do not necessarily coincide. Genes
involved in a common pathway can end up in completely dif-
ferent clusters while genes with different functions can be as-
signed to the same cluster.
The reasons are manifold. First, due to the limited knowl-

edge in GO, some underlying regulations may be unknown.
Other reasons lie mainly in the biological response and in
the cluster algorithm itself. Cellular processes are affected
by both up- and down- regulations and many processes are

only regulated by post-translational modifications. Notably,
the cluster algorithms can be sensitive to statistical variation
and noise. Such contradictions between statistical learning
and current biological knowledge make the biological valida-
tion of clustering methodologies a challenging and interest-
ing issue to investigate. Another problem making the vali-
dation even more difficult is the relatively incomplete knowl-
edge in biological annotation even in the most well-studied
organism; some may even be erroneous [3]. Ideally, such va-
lidity should be robust enough to accommodate incomplete
annotations while computationally efficient enough to facili-
tate large-scale comparisons across different datasets. Also,
it should take into account not only the sets of GO terms,
but also the significance of each term to this particular set of
genes as well as its importance to the whole GO structure.
Cross-validation using different sources of information such
as sequence similarity is also preferable.
There have been a number of works dedicated to statisti-

cal validation of gene expression clustering. However, fewer
solutions to systematically evaluating the clustering quality
based on biological evidence have been presented. Semantic
similarity measures between terms and between genes have
been proposed (see [5] for a review). However, none of the
above evaluates the feasibility of using semantic similarity in
validating clustering algorithms while considering the inher-
ent problems in annotation knowledge. To our knowledge,
we are the first to propose a probabilistic technique that inte-
grates the graph structure of GO and evaluate different gene
expression clustering algorithms.

2. GO-DRIVEN VALIDITY

For each cluster Ck, k ∈ {1, 2, ..., K} for a clustering out-
come, the over-representedGO terms Tk ={t1, t2, ..., tL} can
be identified by using the hypergeometric distribution [10] to-
gether with their correspondingp-valuesPk ={p1, p2, ..., pL}.
Suppose there are v genes annotated to a function in a total of
u genes in the genome, the p-value of observing q or more
genes in a cluster of size b annotated with this function is

p[O ≥ q] = 1−

q−1∑

i=0

(
b

i

)(
u− b

v − i

)
/

(
u

v

)
(1)
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Fig. 1. A GO graph with four over-represented terms link-
ing to all their ancestors until the root Biological Process
(GO:0008150) is reached.

The lower the p-value is, the more unlikely the null hypothesis
that the terms appear by chance is true. These GO terms are
of interest because they represent the most common functions
shared by genes within a cluster. An induced GO relation-
ship graph Gk for a cluster Ck can therefore be constructed
using the most over-represented terms Tk as leaves, linking to
all their ancestors until the root term, one of three ontologies,
is reached. GO graphs are important because they provide
straightforward representations of the functional groups with
a set of genes. An example of such a GO graph is plotted in
Fig.1. The edge weights are to be defined in Section 2.1.
In particular, biological relevance of certain term to a spe-
cific cluster of genes can be measured by its corresponding
p-value. Meanwhile, the information content (IC) [8] is a use-
ful criterion for describing the specificity of a term regarding
the whole population. The assumption is that the less occur-
rences, the more informative a term is since it is more spe-
cific. It is defined as the negative logarithm of the probability
of observing a GO term or its offsprings in one of the on-
tologies, i.e., IC(t) = − log10(freq(t)/freq(root)), while
freq(t) = annot(t) +

∑
freq(children(t)) and annot(t)

is the number of genes annotated with term t. We incorporate
these information in our GO graphs and propose two graph-
based cluster validity techniques.

2.1. Term-Term Distance

First of all, to provide a functional distance measure between
pairs of terms, we propose a graph-based strategy. As two
terms can share parents via multiple paths in a GO graph, the
distance between two terms, d(ti, tj), is defined as the length
of the shortest path, sp(ti, tj), through which the two terms
reach a shared parent, the lowest common ancestor (LCA).
Since GO is a directed acyclic graph, uneven granularity

and biological relevance of certain terms may be considered
when evaluating the shortest distance between two distinct
GO terms. For example, the distance from a node to its child

that is more specific should be larger than to a more general
child term. Therefore, edge weight between two terms tp, tc,
if tp is a parent to tc in a GO graph, can be defined as:

wc,p = 1.5− IC(tp)/IC(tc) (2)

Since the information content of parent terms are always lower
than that of child terms, edge weights defined in Eq. (2) are
bounded in 0.5 ∼ 1.5. The more specific a child term is, the
higher its information content is, thus the larger the weight of
the edge is. Given a graph structure as described above, the
term-term distance is

d(ti, tj) =
∑

edge(x,y)∈sp(ti,tj)

wx,y (3)

2.2. Within-Cluster Compactness

Intuitively,Within-Cluster Compactness aims to credit deeper
GO graph with lower p-values while discouraging terms in
different subgraphs with low p-values, since subgraphs repre-
sent different functional group. For example, the GO graph
in Fig.1 has two big subgraphs. Meanwhile, the measure
should be able to represent the large distance between node
’GO:0006119’ and node ’GO:0046999’ and their significance
in terms of their p-values.
Notably, if a cluster is not significantly enriched, e.g. for

a certain p-value cut-off ρ, it has less GO terms that will con-
tribute to distance measure, such a cluster should score less.
Therefore, given a p-value cut-off ρ, Functional Compactness
(FC) for a cluster Ck is defined:

FCρ(Ck) =

∑

ti∈Tl

log10(pi)
2 · d(ti, root)

∑

ti∈Tl

∑

tj∈Tl,j �=i

log10(pi) · log10(pj) · d(ti, tj)

(4)
The further the terms are from root term (more specific) and
the closer the terms are to each other (similar function), the
higher the corresponding FC scores. For all clusters in a par-
tition, theWithin-Cluster Compactness (WCC) can be defined
as

WCCρ =

∑K

k=1 ln|Ck| · FCρ(Ck)
∑K

k=1 ln|Ck|
(5)

where |Ck| is the size of cluster Ck. Since smaller clusters
tend to be easier to enrich with low p-values, the purpose of
involving ln|Ck| is to encourage significantly enriched big
clusters. WCCρ can serve as a measure for a clustering out-
come in terms of its compactness in functional representation.

2.3. Between-Cluster Similarity

Since an induced GO graph can be obtained using a certain
number of over-represented GO terms from each cluster, K
clusters can then be mapped to K induced GO graphs. The
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idea is that the overlapping degree between two graphs can
indicate their functional similarity, while the information con-
tent can be assigned as weights to the nodes to indicate their
significance. If a specific term is shared in two graphs, it indi-
cates more commonality between clusters than a general term.
An extreme example is that the root term such as ’Biological
Process’ is definitely shared.
Cluster similarity can be used to indicate the overlapping

degree between two clusters. For a specific partition, a set of
graphs G = {G1, ..., GK} each associated with a cluster are
constructed. The functional similarity between two graphs
can be defined as

Simn(Gi, Gj) =

∑

th∈Gi∩Gj

IC(th)

∑

th∈Gi∪Gj

IC(th)
(6)

A large value indicates a higher level of similarity. Between-
Cluster Similarity (BCS) can thus be used to identify well
separated functional clusters. When n terms per cluster are
used to construct the GO graphs, the BCS can be defined as

BCSn =

∑
i�=j(1 + ln(n))ln|Ci| · ln|Cj | · Sim(Gi, Gj)∑

i�=j ln|Ci| · ln|Cj|
(7)

As the name indicates, the smaller this index is, the better
the corresponding partition is since the functional clusters are
well-separated.

2.4. Combining WCC and BCS

By pooling the WCCs of different p-value cut-offs ρ and the
BCSs of consecutive number of terms n = {1, 2, ..., N} per
cluster, the clustering algorithms’ functional validity, V , can
be calculated by incorporating both WCC and BCS indices
from all ontologies in the following formula:

V =

∑

∀ρ

(WCC2
ρ,MF + WCC2

ρ,BP + WCC2
ρ,CC)

N∑

n=1

(BCS2
n,MF + BCS2

n,BP + BCS2
n,CC)

(8)

The reason of using square form is to stress any strong rela-
tionships in any of the three aspects of ontology. And since
this measure does not depend on the cluster number, partitions
with different numbers of clusters can be compared.

3. EXPERIMENTS

A subset of Yeast Cell Cycle data by Spellman et al.[9] is
used in our experiments. The expressions of 384 genes from
Saccharomyces Cerevisiae measured at 17 time points have
peak time in five different cell cycle phases: Early G1(G1E),
late G1(G1L), S, G2 and M.

3.1. Evaluation of six clustering algorithms

We compare three unsupervised methods: Partial regression
with MinimumDistance Estimator (PMDE) [11], SplineClus-
ter [6] and MCLUST [4], and three heuristic methods: hierar-
chical clustering, K-means and Partitioning Around Medoids
(PAM) [7]. PMDE, a tight clustering algorithm which can
separate a set of scattered genes, and MCLUST, a widely-
used model-based method, both give eight clusters as the best
result for this dataset. By setting a threshold, SplineClus-
ter, a Bayesian model-based hierarchical algorithm, also finds
eight components. However, since PMDE can sift out a set
of ten scattered genes, to facilitate fair comparison, they are
discarded from experiments, leaving 374 genes for the algo-
rithms to cluster. For the other three algorithms, which re-
quire the number of clusters as a priori knowledge, we give
them eight as input. Thus all algorithms yield eight-cluster
partitions. An important aspect of evaluating a validation
method is to observe how much it can differentiate from ran-
dom partitions. Therefore, in all of the experiments the mean
of ten runs of random partitions is also compared. Hence,
WCC and BCS values for seven partitions are plotted in Fig.
2 based on the three ontologies, respectively. We can observe
that the random partition scores worst in terms of low WCC
and high BCS. PMDE and PAM have the best performance.
This is further confirmed by the V indices of the six algo-
rithms and average of random partitions: 170, 81, 152, 108,
132, 166 and 40, respectively.

3.2. Comparison of different cluster number

To test if the indices can help to find the optimal number of
clusters, we obtain partitions of different numbers of clusters
(5 ∼ 12) by PMDE. The corresponding V values for these
partitions are: 279, 160, 166, 170, 149, 110, 98 and 93. The
five-cluster partition scores top, reflecting the fact that this
dataset is annotated to five cell cycle phases. Meanwhile, the
choice of eight as number of cluster, which is regarded as the
optimum by both PMDE and MCLUST, suggests new func-
tional associations, based on its corresponding V index that
ranks second. Since pathways have a hierarchical structure,
expressions of genes involved in subpathways can be clus-
tered into subclusters. As stated previously, existing func-
tional annotation is incomplete. Therefore, the eight-cluster
partition may suggest that it represents the next available sub-
clusters in the pathway hierarchy.

4. CONCLUSIONS

To investigate how genes within a cluster are functionally re-
lated, and how clustering helps distinguish such functional
groups, we proposedWithin-Cluster Compactness for an over-
all measure of the functional homogeneity of genes within
clusters, and Between-Cluster Similarity for evaluating the
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Fig. 2. Plots of WCC (a),(b),(c) and BCS (d), (e), (f) for
six clustering algorithms and an average of ten random runs
based on three ontologies BP, MF and CC, respectively

functional separability of various clustering algorithms, both
based on the cluster-specific GO relationship graphs.
Concretely, the correlation was established between se-

mantic similarity and relevant genome resources such as gene
expression data and protein sequences [2]. To take advan-
tage of the semantic similarity in cluster validity research, a
mathematical measure of distance between annotations is of
crucial importance. It enables large-scale predictions of rela-

tionships between gene products that would not be possible
if the GO structures are compared empirically. In addition, it
provides a mean for identification of functionally related gene
products. Such measure should equip biologists a new tool in
their repertoire.
The advantages of our probabilistic validation technique

include its robustness to noise and error, and ability to accom-
modate overlapping clusters. Notably, all annotation-based
validation greatly depend on the completeness and reliability
of the database. An important role of comparisons between
different resources such as protein sequence annotation and
experimental data such as gene expression is to identify such
annotation and infuse new ones.
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