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ABSTRACT 
 

In this paper, we firstly investigate the effect of window 
lengths on selected signal processing-based gene and exon 
prediction methods. We then optimize these methods to 
improve their prediction accuracy by employing the best 
DNA representation, a suitable window length, and boosting 
the output signals to enhance protein coding and suppress 
the non-coding regions. It is shown herein that the proposed 
method outperforms major existing time-domain, frequency-
domain, and combined time-frequency approaches. By 
comparison with the existing DFT-based methods, the 
proposed method not only requires 50% less processing but 
also exhibits relative improvements of 53.3%, 46.7%, and 
24.2% respectively over spectral content, spectral rotation, 
and paired and weighted spectral rotation measures in terms 
of prediction accuracy of exonic nucleotides at a 5% false 
positive rate using the GENSCAN test set. 
 

Index Terms— Signal processing, Discrete Fourier 
transform, DNA, sequence analysis, genomic signal 
processing 
 

1. INTRODUCTION 
 

In most eukaryotic genomic sequences, genes are divided 
into relatively small protein coding regions known as exons, 
and large non-coding regions known as introns. Different 
periodicities for these sequences have been reported in the 
literature. The periodicity of three (which appears mainly 
due to the occurrence of identical nucleotides in identical 
codon positions) behavior of exons has been widely used to 
identify these regions with the help of different DSP 
methods such as discrete Fourier transforms [1, 2, 3, 4], 
time-domain algorithms [5] and allpass-based filters [6]. 
Despite the existence of these and other applications in this 
area, the accuracy of exon detection is still limited. Apart 
from the difficulty of the problem itself, which is mainly due 
to the noncontiguous and non-continuous nature of genes 
and the low exonic fraction in eukaryotic genomes, the 
available methods are not well equipped to capture 
complementary properties of exonic / intronic regions and 
deal with the background noise in detection of exons at their 
nucleotide levels. 

We show herein that existing methods can be optimized 
and their exon detection accuracy can be further increased in 
two respects, by investigating the effects of window lengths 
on gene prediction methods, and by enhancing the signal 
strength in coding regions using the recently proposed signal 
boosting technique [7]. 
 

2. EXISTING METHODS FOR GENE PREDICTION 
 

This section gives an overview of four existing signal 
processing-based methods that exploit periodicity of three 
and other relevant properties to identify genomic protein 
coding regions. All frequency-domain methods reviewed in 
this section employ sliding window based discrete Fourier 
transform (DFT) to measure peaks at k = N/3 arising from 
the period-3 exon behaviour, where N is the window length. 

The spectral content (SC) measure [1] is perhaps the 
most fundamental DFT-based method for period-3 detection. 
In this approach, the DNA is first converted into four binary 
indicator sequences, xA[n], xC[n], xG[n], and xT[n] showing 
the presence (i.e., ‘1’) and absence (i.e., ‘0’) of the 
respective base. The expression given in (1), which 
combines the magnitudes of individual DFTs (i.e., XA[k], 
XC[k], XG[k], and XT[k]), is then used to obtain a total 
Fourier magnitude spectrum for a segment, or window, of 
the DNA sequence: 
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The spectral rotation (SR) measure [3] modifies the SC 
method by rotating four DFT vectors clockwise, each by an 
angle equivalent to the average phase angle value in coding 
regions μ (to make all of them ‘point’ in the same direction). 
It also divides each term by the corresponding phase angle 
standard deviations σ to give more weight to narrower 
distributions of exons. The motivation for this came from 
observations by authors [3] that the distribution of DFT 
phase angle at θ  = 2π/3 is bell-shaped for protein coding 
regions and close to uniform for non-coding regions. 
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The recently proposed paired and weighted spectral 

rotation (PWSR) measure [4] incorporates a statistical 
property of eukaryotic sequences (according to which 
introns are rich in nucleotides ‘A’ and ‘T’ whereas exons are 
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rich in nucleotides ‘C’ and ‘G’), and computes the DFT 
magnitude and phase angle in the forward and reverse 
directions of the same DNA strand. The DNA is first 
converted into two binary indicators, xA-T[n], xC-G[n] 
containing the presence of either of the paired bases. The 
PWSR then rotates the two complex DFT values XA-T[k], XC-

G[k] clockwise, each by an angle equivalent to the means of 
the distributions of the DFT phase angle averaged over 
coding regions of training data μm (one phase angle value 
per coding region is calculated) to align exonic vectors more 
effectively than the SR method. Weights wm based on the 
frequency of occurrence of the bases ‘A or T’ and ‘C or G’ 
in coding regions of the training data are also assigned. The 
expression given in (3) can then be used as a feature: 
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The PWSR measure then combines (3) for l = forward (F) 
and reverse (R) directions of the same DNA sequence: 

)4(][][][ kPWSRkPWSRkPWSR RF +=  
The PWSR measure has been shown to improve on the SC 
and SR measures for a nucleotide level comparison [4]. 

The time-domain average magnitude difference function 
(AMDF), has been shown to be more effective than the 
period-3 detection measures discussed above [4]. 
 

3. EFFECT OF WINDOW LENGTHS 
 

Most existing signal processing-based gene prediction 
methods have used a window size of 351 with the arbitrary 
argument that the data window should be ‘reasonably long’ 
or a few hundred base pairs long [1, 2, 3, 4]. Herein, we 
perform the first investigation of the suitability of different 
window sizes for period-3 exon detection. 

3.1. Database and Evaluation Metrics  

The combined Burset / Guigo 1996 [8] and HMR195 [9] 
data set containing 765 vertebrate and mammalian gene 
sequences, was divided into four subsets. The sequences 
were categorized according to the average exon length of 
individual sequences, and for each data subset, the number 
of gene sequences, number of exons, and average exon 
length were calculated, as shown in Table 1. 

In this experiment, the DFT-based SC measure and 
AMDF methods for gene and exon prediction were used, 
representative of ‘frequency domain’ and ‘time domain’ 
methods respectively. Rectangular windows, varying in 
length between 27 and 378 in increments of 27 bp, were 
employed. In each case, the area under receiver operating 
characteristic (ROC) curve, AUC, was calculated for both 
methods, using the subsets of genomic data from Table 1. 
The ROC curve evaluation measure can be explained with 
the help of Figure 1, where true positive (TP) is the number 
of coding nucleotides correctly predicted as coding, false 
negative (FN) is the number of coding nucleotides predicted 

as non-coding, true negative (TN) is the number of non-
coding nucleotides correctly predicted as non-coding, and 
false positive (FP) is the number of non-coding nucleotides 
predicted as coding. An ROC curve explores the effects on 
TP and FP as the position of an arbitrary decision threshold 
is varied. 

Table 1. Categorization of combined Burset / Guigo 1996 
and HMR195 sequences for window length investigation 

Data 
Subset 

Average 
Exon Length 
of Individual 
Sequences 

(bp) 

Number of 
Gene 

Sequences 

Number 
of Exons 

Average 
Exon 

Length 
of Data 
Subset 

Short (S)  100 120 603 83 

Medium 
(M) 

> 100 &  
200 

426 2372 143 

Long (L) 
> 200 &  

300 
73 303 235 

Very Long  
(VL) 

> 300 146 319 578 

 
 

 TN TN TN FN FN FN TP TP FP 

TRUE 

PREDICTED 

 
Figure 1. Nucleotide-level measures of prediction accuracy. 

The black / gray blocks are the actual / predicted exonic 
regions. 

3.2. Window Length Results and Discussion 

Figure 2 shows AUC as a function of window size for both 
methods, across different data subsets. The optimum 
window length for the DFT-based method depends to a large 
extent on the average length of exon regions in the dataset, 
whereas for the AMDF method, this point lies within a short 
range. A window size somewhere between 100 and 150 
seems optimal for the AMDF method, whereas the DFT 
method requires larger window sizes, especially for very 
long sequences. 

It can be observed that for the DFT method, there is not 
a large variation in optimal window sizes using short, 
medium, and long data sets. This suggests that for genomic 
sequences having exons shorter than 300 bp, the DFT 
method could give its best performance with a window size 
in the range 100 to 250 bp. However, to identify exons 
longer than 300 bp, a much larger window is to be preferred. 
Clearly the commonly used window size of 351 for DFT 
based methods is a crude assumption that may only be valid 
for long exonic regions. It can be further observed from 
Figure 2 that small exons are poorly detected by both 
methods, with AMDF always better than DFT. For the 
detection of larger exons, the computationally cheaper 
AMDF method still performs better, even with a much 
smaller window size than the DFT-based SC method. 
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Figure 2.  Variation of area under ROC curve with different 
window lengths for different average exon lengths, for the 

DFT-based SC and AMDF methods. 
 

4. PROPOSED OPTIMIZED METHOD  
FOR GENE PREDICTION 

 

We modify the frequency-domain PWSR measure to 
improve on existing methods [4], in terms of computational 
complexity and relative accuracy for gene prediction. The 
block diagram of the proposed setup is shown in Figure 3, 
where the DNA sequence is firstly converted into numeric 
values using the paired numeric representation, previously 
shown empirically to be the best available mapping scheme 
for the gene and exon prediction problem [10]. 

 

DNA 
sequence  Symbolic-to-

numeric conversion 
(paired numeric) 

Single 
sequence  Weighting  

& vectorial 
rotation  

DFT [2π / 3] 
(forward) 

DFT [2π / 3] 
(reverse) 

Signal 
boosting 

Signal 
boosting 

 
Coding / non-

coding decision 

 
Figure 3.  Block diagram for the proposed optimized 

method. 
According to the paired numeric representation, values of +1 
and –1 are assigned to A-T and C-G nucleotide pairs 
respectively. For example, the DNA sequence 
‘AGTTCTACCGA’ has paired numeric representation: 

x[n] = {+1, –1, +1, +1, –1, +1, +1, –1, –1, –1, +1}. 
Weights wm based on the frequency of occurrence of bases 
‘A or T’ and ‘C or G’ in coding regions of the training data 
are then assigned. A reduction in DFT processing is 
achieved after symbolic-numeric conversion by applying the 
spectral rotation and weighting of the PWSR measure before 
rather than after the DFT processing, recognizing that the 
DFT is a linear transform. The length of the DFT window is 
another important performance parameter, investigated in 
section 3, and here we use a window length of 150 base 
pairs, assuming human genomic sequences. 

The recently proposed signal boosting technique [7] is 
then applied to the forward and reverse DFT features, to 
enhance their values in protein coding and suppress them in 
non-coding regions. According to the signal boosting 
technique, used originally in enhancement, the protein 
coding regions are treated as the ‘signal’, while non-coding 
regions are treated as the ‘noise’. The gain factor Γ(m), 
which weights the period-3 detection feature X(m), can be 
calculated as the ratio of a short-term average signal energy 
P(m) to the estimate of the noise floor level Q(m) for m = 
1,2,… M, where M is the length of DNA sequence. The 
short-term signal energy is calculated as: 

( ) ( ) ( ) ( ) ( )5.1.1 mXmPmP αα +−−=  
where α is a small positive constant responsible for 
controlling the changes in signal energy and smoothing the 
signal. The noise floor estimate is a slowly varying factor 
and is calculated as: 
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where β is a positive constant much smaller than α that 
controls the speed of adaptation of the noise floor level to 

the changes. The boosted signal ( )mX
∧

 is then calculated 
as: 
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Finally, a simple fusion approach is employed to combine 
the boosted spectral content based features, in which the 
forward and reverse boosted features are normalized to the 
range [0, 1] and combined with an unweighted sum. The 
resultant features are then used as a feature for 
discrimination of coding and non-coding nucleotides. 
 

5. EVALUATION 

5.1. Database and Evaluation Metrics 

Two datasets consisting of human genomic sequences were 
employed for the training and testing: the GENSCAN 
learning set (188 multi-exon sequences), and the GENSCAN 
test set (64 available multi-exon gene sequences), as listed in 
[11]. 

A constant window size of 351 was used for the existing 
DFT-based SC, SR, and PWSR measures, as suggested in 
their original descriptions [1, 3, 4]. A frame size of 117 was 
used for the AMDF method, similar to [5]. In 
implementations of the SR, PWSR and the proposed 
method, prior information (frequency of nucleotide 
occurrence weights and angular mean and deviation values) 
was obtained from the GENSCAN learning set. Empirically, 
we found α = 0.01 and β = 0.0005 most suitable parameters, 
to enhance the signal strength in protein coding and suppress 
them in non-coding regions. 
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The discriminatory power of all methods was measured 
and compared at the nucleotide level, using evaluation 
measures such as AUC, and percentage of exonic 
nucleotides detected as false positives, similarly to [4]. 

5.2. Gene Prediction Results 

Table 2 summarizes the comparative evaluation of the 
proposed gene prediction method with selected existing 
approaches. The proposed method outperforms the existing 
time-domain, frequency-domain, and combined time-
frequency measures, giving consistently improved exonic 
nucleotide detection and the largest area under ROC curve. 
The proposed method reveals relative improvements of 
53.3%, 46.7%, and 24.2% respectively over the SC, SR, and 
PWSR measures in the detection of exonic nucleotides at a 
5% false positive rate. Furthermore, the proposed method 
gives relative improvements of 25.1% and 13.1% 
respectively over the AMDF and time-frequency hybrid 
(TFH) measure [4] in the detection of exonic nucleotides at 
a 5% false positive rate. Although the improvements over 
existing methods at a 20% or larger false positive rate are 
more modest, results at low false positive rates are more 
significant, due to the high likelihood of false positives 
resulting from the low exonic fraction in eukaryotic 
genomes. We conjecture here that a further small gain in 
accuracy over existing methods may be obtained by 
combining the proposed method with the AMDF in a way 
similar to TFH measure in [4]. 

Table 2. Comparison of period-3 exon detection methods 
evaluated on the GENSCAN test set  

% of exonic nucleotides detected as 
false positive Method 

Area 
under 
ROC 
curve 5%  10%  15% 20% 30% 

SC  0.7778 33.8 46.7 55.2 61.6 71.0 

SR 0.7800 35.3 48.6 57.0 62.9 72.4 

PWSR 0.8123 41.7 53.8 62.5 68.7 77.3 

AMDF 0.8338 41.4 56.2 66.5 72.9 81.7 

TFH 0.8448 45.8 59.5 68.8 74.9 81.6 

Proposed 
(window length 
selection only) 

0.8501 50.8 63.2 70.9 76.2 83.1 

Proposed 0.8527 51.8 64.3 71.5 76.4 82.3 

 
6. CONCLUSION 

 

We have investigated the effects of window lengths on two 
gene and exon prediction methods: AMDF and the DFT-
based SC measure. This revealed the optimum window 
length for the AMDF method, of around 150 bp, to be 
relatively independent of the average exon lengths. For the 
DFT-based SC measure, a longer window is generally 
required, except for exons shorter than 300 bp. Results on 
the combined Burset / Guigo 1996 [8] and HMR195 [9] data 
set strongly suggest that a priori knowledge of the average 
exon length of an organism can help researchers decide the 

optimal window length for signal processing methods 
applied to the detection of unknown exons of same 
organism. For example, in the human genome, about 80% of 
the exons on each chromosome are smaller than 200 bp in 
length [12], so for the detection of most human exons, a 
window length around 150 bp could be expected to give 
good DFT-based performance.  

We have also proposed an optimized method for 
eukaryotic gene prediction which employs the most effective 
DNA representation examined to date in conjunction with a 
suitable window length, the paired and weighted spectral 
rotation measure and a signal boosting technique. Using the 
GENSCAN test set of human genomic sequences, the 
proposed method outperforms all existing methods in this 
comparison. Future work will combine this optimized signal 
processing method with data-driven methods to advance the 
state of the art in detection of exonic/intronic end-point 
signals (e.g. acceptor/donor splice sites, start/stop codons). 
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