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ABSTRACT

In this work, we present novel methods for detecting the presence
of motion artifact in photoplethysmographic (PPG) measurements
based on higher order statistical information present in the data. We
analyze both clean and corrupt PPG data in the time and frequency
domains. In the time domain, skew and kurtosis measures of the
signal are used as distinguishing metrics between clean and motion-
corrupted data. In the frequency domain, the presence of random
components due to motion artifact is analyzed using a frequency
domain kurtosis measure. Additionally, bispectral analysis of PPG
data indicates the presence of strong quadratic phase coupling (QPC)
and more specifically self coupling in the case of clean PPG data.
Though quadratic phase coupling is found in data corrupted by mo-
tion artifact, the self coupling feature is absent. A Neyman-Pearson
(NP) detection rule is formulated for each of the measures. Addition-
ally, treating each of the measures as observations from independent
sensors, the Varshney-Chair rule [11] is used to fuse individual deci-
sions to form a global system decision.

Index Terms— Higher Order Statistics (HOS), Quadratic Phase
Coupling (QPC), Receiver Operating Characteristics (ROC)

1. INTRODUCTION

Corruption of PPG measurements by motion artifacts has been a sig-
nificant obstruction to the efficient and reliable use of pulse oxime-
ters for continuous real-time health monitoring [8]. Motion artifact
that mixes with the desired data resides in the same frequency range
as that of the data (2-5 Hz). Over the years, many researchers have
focused their efforts on motion artifact removal techniques. While
removing motion artifact is critical, detecting its presence is a key
task that needs to be addressed first. A reliable motion artifact detec-
tion technique lays the foundation for a completely automated PPG
data processing system that identifies PPG data frames that are cor-
rupted with artifacts and further processes them for motion artifact
removal. Some work has addressed the detection issue by correlat-
ing a PPG data frame with a clean reference signal to detect motion
artifact [12]. However, such techniques are unsuitable for robust
continuous real-time monitoring.

This work addresses the issue of detecting the presence of mo-
tion artifact based on the inherent characteristics of PPG data. Specif-
ically, the HOS properties of clean and motion corrupted PPG data
are used as distinguishing features to aid detection. HOS proper-
ties have been investigated in the context of other biomedical signals
[1]. Fourth order cumulants were used in [2] to dynamically deter-
mine rhythmic oscillations in PPG data. However, we believe that
the work presented here is the first effort to employ HOS analysis
for motion detection in PPG data.
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We first analyze the PPG data from different subjects in both the
time and frequency domains. In the time domain, skew and kurto-
sis measures associated with the data are analyzed. In the frequency
domain, the presence of random components due to motion artifact
is ascertained using a frequency-domain kurtosis measure as in [9].
Furthermore, bispectral analysis of PPG data indicates the presence
of strong quadratic phase coupling (QPC) and more specifically self
coupling in the case of clean PPG data. In motion artifact corrupted
data, QPC between random frequency components is observed, but
the self coupling feature is absent. Neyman Pearson (NP) tests are
formulated based on the time domain and frequency domain met-
rics mentioned. Using practical test data, we characterize the perfor-
mance (probability of false alarm- Pr, probability of detection-Pp,
probability of error-P.,ror) of the detection tests. The performance
results illustrate the potency of the proposed methodology for con-
sistent and robust detection of motion artifact in PPG data.

The paper is organized as follows. The theory of HOS mea-
sures considered in this work is briefly discussed in 2. The results of
PPG data analyses (with and without motion artifact) based on the
above measures are presented in section 3. Based on these results,
a Neyman-Pearson detection (NP) rule is formulated for each of the
measures and discussed in section 4. Section 5 addresses the combi-
nation of all of these measures to formulate overall system decision.
We conclude the paper in section 6.

2. THEORY

The HOS measures considered in this work follow:

1. Skew and Kurtosis - The skew and kurtosis of a random vari-
able X is given by

Ca:(0,0) = K75 (skew)
C42(0,0,0) = %— (kurtosis) (1

where o is the standard deviation; p3 and ju4 are the third and
fourth moments, respectively. Skew is a measure of the sym-
metry (or the lack of it) of a probability distribution, while the
kurtosis measure indicates a heavy tail and peakedness OR a
light tail and flatness of a distribution relative to the normal
distribution. This measure captures the random variations of
data from the mean.

2. Bispectrum - The third-order polyspectrum of a random vari-
able X is defined as the Fourier transform of its third cumulant
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sequence -

Ssa(fisf2) = > Y [Csalk,l)

k=—oo0l=—0c0

exp(—j2m(fik + fal))]

where C's;(k,1) is the third cumulant sequence of X. The
power spectrum suppresses all phase information in a random
process, while the bispectrum does not. When the harmonic
components of a process interact, in addition to the contribu-
tion of power at their sum and difference frequencies, defini-
tive phase relations also exist; this is called Quadratic Phase
Coupling (QPC). For example, consider the following pro-
cess:

X1(k) = cos(A1k + ¢1) + cos(A2k + ¢2)

+ cos(Ask + ¢3) 2)

where A3 = A1 + Ao, indicating that A1, A2 and A3 are har-
monically related. If ¢1, ¢2 and ¢3 in (2) are independent
random variables uniformly distributed in the range [0,27],
then (A3, ¢3) is an independent harmonic component. How-
ever, if in (2), ¢3 = ¢1 + ¢2, then (A3, ¢3) is the result of
quadratic coupling between (A1, ¢1) and (A2, ¢2). A detailed
comprehensive treatment of topics pertaining to HOS can be
found in [3]-[7]

3. DATA ANALYSIS

Analysis of PPG data is performed in order to understand and extract
features that can be used as distinguishing metrics between clean and
motion corrupted data. Data are collected using a reflectance pulse
oximeter [8] from two healthy subjects in the age group of 22-24
years. The subjects follow the same motion patterns as in [8]:

1. Stationary Position: The subjects are required to be perfectly
still - no movement of the wrist, fingers and elbow.

Finger movements (three cases): left-right (swinging), up-
down (bending), and arbitrary finger movements. These are
performed keeping the wrist and elbow stationary.

Wrist movements: The wrist is rotated and arbitrarily moved,
keeping the elbow and fingers stationary.

Elbow movements: The elbow is bent and stretched, keeping
the wrist and the fingers stationary.

Data are fed into a MATLAB script that dissects the entire data seg-
ment into short frames of equal length. First, each of the segments
are passed through a bandpass filter (0.3-12 Hz). Here, the design
of the filter is critical as the phase information in the data needs to
be preserved in order to retain the shape of the PPG waveform. For
this purpose, a zero-phase forward-reverse filter of order four in both
directions is chosen. After filtering, the trend associated with each
data segment is removed by extracting an appropriately fitted poly-
nomial curve. Each frame of data is then inspected in the time and
frequency domains, and the HOS properties are characterized.

3.1. Time Domain Analysis

In the time domain, we analyze the skew and kurtosis measure of the
time variation of the PPG signal in each frame considered. This is
done by evaluating equation (1) for each data frame. It is, however,
important to note that these measures will vary with age and health
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condition. It is observed that the skew and kurtosis measured for
the case of motion corrupt data is much higher in magnitude when
compared to clean data. Therefore, these measures serve as features
for motion detection.

3.2. Frequency Domain Analysis

In the frequency domain, the kurtosis measure is computed for the
magnitude of the Fourier spectrum for each data frame. This mea-
sure considers the magnitude of the components present at each fre-
quency sampled by the Discrete Fourier Transform (DFT) operation.
It is seen that kurtosis is lesser in magnitude for frames corrupted
with motion artifact when compared to those with clean data. This
means a Fourier spectrum of clean data has a lesser number of signif-
icant frequency components (since only the harmonic components
are prominent) compared to a spectrum of motion corrupted data
(that consists of random spectral components).

3.3. Bispectral Analysis and Quadratic Phase Coupling

The bispectrum and the bicoherence of the data frames are analyzed
using the MATLAB Higher-Order Spectral Analysis Toolbox [5].
Significant peaks at non-zero frequencies are observed in the bis-
pectrum diagonal slice plots for clean PPG data, thereby confirming
the presence of strong quadratic phase coupling. The diagonal slice
plot indicates the frequencies that are being significantly coupled.
In the case of clean PPG data, Table 1 indicates peaks at kfo Hz,
k = 1,2,3, where fo = 1.54 Hz is the most dominant frequency
being coupled, indicating the presence of self coupling between fre-
quencies (we have fo + fo = 2fo and fo + 2fo = 3fo and so on,
indicating the peaks in the diagonal slice plot). However, in the case
of corrupt PPG data, QPC is observed to occur between random fre-
quency components and the phenomenon of self coupling is absent
as shown in Table 2.  The features used for motion detection are
summarized below:

1. Time-Domain Features: Skew and kurtosis measures that pro-
vide information on the distribution of data. They contain

information regarding the shape of the PPG waveform.

Frequency-Domain Feature: Frequency domain kurtosis mea-
sure that indicates the presence of random components in the
Fourier spectrum, thereby differentiating the spectrum of a
clean signal that contains only the main harmonics.

3. Bispectral Feature and Quadratic Phase Coupling: Clean PPG
data are characterized by the presence of strong self coupling

Table 1. Bispectrum Plot Results - Clean Data
Coupling Frequency (f) Hz [ Coupling Magnitude

1.54 0.1565
3.08 0.0211
4.62 0.0037

Table 2. Bispectrum Plot Results - Corrupt Data
Coupling Frequency (f) Hz [ Coupling Magnitude

0.74 0.2839
2.74 0.0081
4.41 0.0009




between the fundamental components of the frequency spec-
trum. This is absent in artifact corrupt measurements where
quadratic phase coupling between random frequency compo-
nents is observed.

4. DETECTION TEST

NP Detection Rule Formulation: PPG data are collected from 10
healthy subjects, both male and female, in the age group of 22-30
years (different subjects from those considered for analysis and fea-
ture extraction in section 3), in order to formulate the hypotheses for
NP detection rule. They follow the same motion routines as detailed
in section 3. Based on data obtained, the distinguishing measures
are computed for each data frame as described in section 3. For each
of the measures, let Hop denote the null hypothesis corresponding to
the region for clean data and H; denote the alternative hypothesis
corresponding to the region for corrupt data. Under the hypotheses
Hp and H; the time-domain kurtosis, skew measures and frequency
domain kurtosis measures are distributed as

Ho: yi ~N(poi,00;)

Hi: oy~ N(pi,ol)  Vie{1,2,3} 3)

where A (11, 0%) is a Gaussian distribution with mean  and variance
o2, i corresponds to each of the distinguishing metrics. y; is the
observation based on time-domain kurtosis (¢ = 1), skew (i = 2)
and frequency domain kurtosis (¢ = 3) measures. Based on values
of the time-domain kurtosis and skew for each frame, local decisions
d; € {0, 1} are made according to

1
-y

where n; = 60; Q"' (1 — Pr,) + 0i, 6; = 0 corresponds to the null
hypothesis, and §; = 1 corresponds to the alternative hypothesis.
Here P, is the false-alarm probability, Pp, is the corresponding
probability of detection for each measure, and Q™" is the inverse
O-function. For frequency domain kurtosis, a decision is made ac-

cording to
1
-t

where 7; = 00; Q" (Pr,) + pos. It can be easily shown for the
time-domain kurtosis and skew measures that

ify, >m

ify, <mi  fori e {1,2} @

ify; <mi

iy > fori=3 )

P = 1_Q<M) and
04

Pp, = 1_Q<M). (6)
014

For the frequency domain kurtosis measure, the corresponding Pr;
and Pp, are given by

P = Q(m) and
T0s

Py = Q<m) o
014

The tests in (4) and (5) are applied to data obtained from three healthy
test subjects of 22-30 years (different subjects from those considered
for formulating hypotheses in (3)). The performance of the detectors
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on test data and theoretical receiver operating characteristics (ROC)
for the tests are shown in Figure 1. It is important to note that the
performance on test data conforms to that expected in theory, assum-
ing a Gaussian distribution for y;. The kurtosis measures in the time
and frequency domains are better in performance compared to the
skew measure in the time domain. This is because the skew mea-
sure indicates the symmetry (or the lack of it) of the distribution of
the data about the mean and is thus more characteristic of the PPG
waveform (or the subject), while the kurtosis measure captures ran-
dom variations from the mean.

Self Coupling Detection Rule: As concluded earlier, clean PPG
data are characterized by self coupling, which is absent from data
containing motion artifact (though QPC between random frequency
components is present). That is, self coupling implies that the data
are clean. Hence, to determine the presence/absence of self coupling,
the frequencies being coupled are noted for each data frame and a
decision is made as follows:

Self coupling = clean data

1
0i = { 0 No self coupling = corrupt data ®)

The Pp and Pr measures related to the self coupling measure
are directly computed from the initial training set. The Pr value is
found to be 0.0420, while the Pp value is found to be 0.8932.

5. DECISION FUSION

The time domain measures (kurtosis, skew) and the frequency do-
main measures (QPC, kurtosis) are modeled as four individual sen-
sors whose independent decisions can be fused to detect the presence
of motion artifact in a given data frame. To implement this sensor
fusion, the Varshney-Chair rule [11] is used. The work describes
a rule that fuses individual sensor decisions while minimizing the
probability of error of the overall detection system. Weights or re-
liability measures that are a function of individual Pr, and Pp, are
associated with the decisions made by the individual sensors, and the
fused global decision is given as follows:

f(617"'7677«) = { i_}

where §; = +1 and 6; = —1 Vi € {1,2,3,4} are the decisions
made by the individual sensors corresponding to the presence/absence
of motion artifact respectively based on the detection rules developed
in section 4. The weights a; are defined as

if ap + Z?:l aid; >0
otherwise,

9

ap = 0 (10)
D; \ -
a; = log( 1)1f(51:—§—1 an
F;
_ I_PFz' e s
a; = log(l_PDi)lf&f 1 (12)

assuming uniform cost assignment and equal prior probabilities for
both hypotheses in (3).

The tests in (4), (5) and (8) are applied to data obtained from
three test subjects as described in the previous section to obtain J;
Vi € {1,2,3,4}. We select thresholds in (4) and (5) to yield a
Pr, = 0.2. We then evaluate the individual Pp, followed by their
respective Perror. Using this, the weights are computed in (10)
and the fused decision is formed using (9). This is repeated for
Pr, = 0.4. The results are summarized in Table 3. It can be eas-
ily seen that in both the cases of Pr,, the fused decision provides a
better probability of detection of motion artifact than the individual
Sensors.



Frequency Domain Kurtosis Measure

Fig. 1. Receiver Operating Characteristic (ROC) for a) Time domain kurtosis measure. (b) Time domain kurtosis measure. (c) Frequency

domain kurtosis measure.

Table 3. Sensor Decision Fusion Results

Sensor [ PF [ PD [ Perror [ PF [ PD [ Perror
Kurtosis 0.2 | 0.78 0.16 0.4 | 0.85 0.19
Skew 0.2 | 042 0.40 04 | 0.58 0.47
QPC 0.04 | 0.89 0.08 0.04 | 0.89 0.08
FDK 0.2 0.9 0.2 0.4 | 0.92 0.25
Fused Decision | 0.06 | 0.91 0.07 0.2 | 0.97 0.11

6. CONCLUSIONS

In this paper, we present a novel method for detection of motion arti-
fact in PPG data, primarily considering higher order statistics (HOS)
information present in the data. In the time domain, we observe
that the skew and kurtosis measures associated with the corrupt PPG
data are much higher in magnitude when compared to clean PPG
data. The frequency-domain kurtosis measure is much smaller for
the corrupt data frames than the clean ones. Bispectral analysis of
PPG data indicates the presence of strong quadratic phase coupling
(QPC) and, more specifically, self-coupling in the case of clean PPG
data. Though quadratic phase coupling is found in data corrupted by
motion artifact, the self coupling feature is absent. Based on all of
these observations, Neyman-Pearson (NP) rules are formulated for
each of the measures. It is understood that kurtosis based detection
is more reliable than the skew measure. It is also seen that fusing
decisions based on individual measures further enhance the overall
detection capability. In summary, the HOS based motion detection
algorithm is a robust and reliable method to identify corrupt data
frames that can be further processed for motion artifact removal.
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