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ABSTRACT

The understanding and exploitation of non-linear microbubble sig-
nals is an active research area that aims to advance contrast ultra-
sound into a high sensitivity and specificity diagnostic imaging modal-
ity. To discriminate the difference between echoes from tissue and
contrast microbubbles, it is of significance to extract as much infor-
mation of the reflected signals as possible, especially the pulse loca-
tions in the time domain and their corresponding spectral contents in
the frequency domain. In this paper, a novel estimation system for
extracting the information of interest is proposed. This estimation
technique is based on non-parametric methods for coarse estima-
tion, followed by a parametric method within Bayesian framework
for estimation refinement. The results show that the pulse location
and frequency content can be accurately estimated simultaneously.
This assists in the design of transmit pulsing regimes in future work.

Index Terms— ultrasound contrast microbubbles, Bayesian in-
ference, Monte Carlo methods, parametric model

1. INTRODUCTION

Microbubbles have been widely used as Ultrasound Contrast Agents
(UCAs) in bio-medical research area since the 1990’s [1]. They are
composed of gas-filled encapsulated microspheres, usually with di-
ameter below 7μm, that can go through microcirculations in the hu-
man body. The microbubbles have a non-linear acoustic signature, as
they are more compressible when exposed to an oscillating acoustic
signal compared to soft tissue [2]. In order to design a transmit pulse
that can maximise the difference between responses from microbub-
bles and tissue and increase the contrast-to-tissue ratio (CTR) [3],
it is of particular interest to jointly extract the characteristics of re-
sponses in both the time and frequency domains.

Most traditional methods for frequency estimation in ultrasound
are based on the Fourier transform (FT) methods [3]. However, due
to the limitations of frequency resolution, the FT can not detect some
frequencies that may have important physical meanings, or may pro-
vide false spectral contents. Moreover, it does not localize in time.
Additionally, in the time domain, pulse locations and durations at-
tract more attention. The Hilbert transform [4] is widely used for en-
velope detection. It may fail when the signal is embedded in noise.
Moreover, it only operates in the time domain and cannot offer any
frequency information about the signal. There is little information
in the ultrasonic literature about the joint estimation of pulse loca-
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tions and frequencies, which can be further developed, especially for
multiple pulse echo signals.

In this paper, a new ultrasound contrast microbubble estimation
system is proposed. The whole procedure is outlined in section 2. In
section 3, coarse estimation for pulse locations and spectral content
based on nonparametric methods is described. In section 4, optimi-
sation of parameters using a parametric model within the Bayesian
framework provides more accurate estimates. Performance eval-
uation for the synthetic signals and experimental signals are both
shown in section 5. Section 6 concludes that the proposed estima-
tion system can extract the information in both time and frequency
domains simultaneously.

2. ULTRASOUND CONTRAST MICROBUBBLE
ESTIMATION SYSTEM

The design of a complete estimation system is required to extract the
information of echo signals from microbubbles automatically. The
system can be divided into two parts, as displayed in Fig.1. The first
part is coarse estimation for pulse locations and the frequency con-
tents; the second part is to refine the estimation by using a paramet-
ric model within Bayesian framework. Details are described later in
sections 3 and 4.
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Fig. 1. Procedure for the whole estimation system
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3. COARSE ESTIMATION

3.1. Coarse Estimation in Time Domain

From the observation of responses from microbubbles, the techniques
used for signal burst detection can be applied to pulse location esti-
mation of the microbubble echo signals in ultrasound imaging. The
estimation of pulse location is related to the estimation of the start
and end points of each pulse.

3.1.1. Wavelet Denoising for Envelope Detection

Envelope detection using the Hilbert transform is widely used for
changepoints (start and end points) estimation [4]. In the case of
low signal-to-noise ratio(SNR), the envelope detected by the Hilbert
transform is quite noisy, thus can not be easily extracted. In order
to obtain a clearer envelope of the multiple pulse signal, wavelet
denoising is adopted as it has more advantages compared with tra-
ditional filtering approaches, e.g. it is non-linear and can be applied
to non-stationary signals. However, the method may fail when there
are closely-spaced pulses present in the real bubble signal.

3.1.2. Voice Activity Detection

Voice activity detection (VAD) is an energy detector in various appli-
cations. The technique used by Alan [5] introduces a low-variance
spectral estimator and determines an optimal threshold based on the
estimated noise statistics. Nevertheless, if the SNR of the signal
is low or the amplitudes of microbubble pulses are small, the per-
formance of VAD is not acceptable since the threshold may not be
properly chosen.

3.1.3. Coarse Estimation of Pulse Location

Although both the VAD algorithm and wavelet denoising for enve-
lope detection have their own limitations, the combination of these
two can improve the detection accuracy. Firstly, the Hilbert trans-
form is used for envelope detection. Secondly, the envelope is de-
noised by a stationary wavelet transform, which is selected for its
time-invariant property [6]. Finally, the VAD algorithm is performed
for the denoised envelope. Following the aforementioned procedure
of the algorithm, the proposed method can give better estimation
for both closely-spaced pulses and small amplitude pulses. In ad-
dition, by experimental observation, the method can tolerate lower
SNR down to 5dB.

3.2. Coarse Estimation in Frequency Domain

The discrete Fourier transform (DFT) is often used to analyze the
signal in the frequency domain. Andrieu and Doucet proposed a fre-
quency estimation algorithm based on the DFT in [7]. This approach
can sometimes overestimate the number of frequencies. Therefore,
the multitaper spectral estimator is introduced to refine the sampling
process in the algorithm. In this technique, several data windows
are used on the same data record to obtain several modified peri-
odograms. These periodograms are then averaged to produce the
multitaper spectrum [8]. By reducing the variance, a much cleaner
spectrum is achieved. Moreover, the bias and resolution loss can also
be reduced for properly designed tapers.

4. ESTIMATION REFINEMENT

The aforementioned estimation techniques are all non-parametric
methods, which can only provide coarse estimation of the param-
eters of interest. Furthermore, for frequency estimation, multitaper

spectral estimator only works for one specific segment of pulse and
cannot offer the number of frequencies automatically. When there
are multiple pulses in the signal and the number of frequencies for
each pulse is unknown, more advanced techniques, such as using a
parametric model within Bayesian framework, can give more accu-
rate estimates.

4.1. Signal Model

As the experimental transmit pulse in ultrasound appears to be com-
posed of several cycles of a harmonic signal, the multiple pulse bub-
ble echo can be modeled as several segments of sum of sinusoids.
Assume there are m pulses in the observed signal with N data points.
The multiple pulses model can be defined as follows: (T0 � 1,
T2m+1 � N and i = 0, . . . , 2m)

D0 : x(t) = n(t)

Dkm : x(t) =

(
n(t) if Ti < t ≤ Ti+1 − 1, i is even

xi(t) + n(t) if Ti < t ≤ Ti+1 − 1, i is odd

where xi(t) =
kiP

j=1

acj,ki
cos(ωj,kit) + asj ,ki sin(ωj,kit).

The signal model can be written in a vector-matrix form:

x = G(ωkm , T 2m)ak + n (1)

where n is the zero-mean white Gaussian noise with variance σ2
k and

G =

2
6666666666664

0 0 · · · 0
G1 0 · · · 0
0 0 · · · 0
0 G2 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · Gm

0 0 · · · 0

3
7777777777775

.

The G matrix is of size 2N ×
mP

i=1

ki. It contains the informa-

tion about changepoints (T1, T2, . . . , T2m), which are related to the
positions of multiple pulses in the echo signal. Each component
Gj(j = 1, . . . , m) in G matrix represents a single pulse, which has
its own parameters. The number of sinusoids and other parameters
θk �

`
ωk, ak, σ2

k

´
are all unknown in each pulse. As far as each

segment is concerned, the Gj matrix can be defined as:

Gj =

2
6664

E(ωk1t(T2j−1)) . . . E(ωkmt(T2j−1))
E(ωk1t(T2j−1 + 1)) . . . E(ωkmt(T2j−1 + 1))

...
...

...
E(ωk1t(T2j − 1)) . . . E(ωkmt(T2j − 1))

3
7775

where E (·) � [cos (·) , sin (·)]. Moreover, T2j−1 and T2j are two
corresponding changepoints at the start and end points respectively
for each pulse segment. For each Gj , km may have different values,
which implies the different number of frequencies and their values
in different pulses.

The likelihood function can be easily obtained according to the
signal model ( m in {k, θk}m represents different pulse segment):

p(x|{k, θk}m, T 2m) = (2πσ2
k)−N/2 ×

exp

j
− 1

2σ2
k

‖ x−G(ωkm , T 2m)ak ‖2
ff

. (2)
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4.2. Reversible jump MCMC Algorithm for Frequency Estima-
tion Refinement

According to Bayesian inference [9], the joint posterior distribution
is achieved based on the properly chosen prior distribution of all the
parameters. The joint prior distribution and the posterior distribu-
tion, after integrating out the nuisance parameters akm and σ2

k, are
expressed as follows (more details can be found in [7] and v0, γ0, Λ,
δ2 are hyperparameters of the Bayesian model):

p({k, θk}m, T 2m) = p(T 2m)p({k, ak, ωk}m|σ2
k)p(σ2

k)

∝ Λkm

km!
exp(−Λ)× 1

|2πσ2
kΣkm |1/2

× 1

πkm

1

σ2
k

× exp[−aT
km

Σ−1
km

akm

2σ2
k

]× (
1

N − 1

1

N − 2
· · · 1

N − 2m
) (3)

where Σ−1
km

= δ−2GT (ωkm , T 2m)G(ωkm , T 2m).

p(T 2m, {k, ωk}m|x) ∝ (γ0 + xT Pkm x)−(N+v0)/2

× (Λ/[(δ2 + 1)π])km

km!
(4)

where Pkm = IN −G(ωkm , T 2m)MkmGT (ωkm , T 2m), IN is a
N×N identity matrix and M−1

km
= GT (ωkm , T 2m)G(ωkm , T 2m)

+Σ−1
km

.
However, the joint posterior distribution is highly non-linear,

which means the closed form of p(T 2m, {k, ωk}m|x) can not be
obtained. Therefore, a reversible jump Markov chain Monte Carlo
(rjMCMC) algorithm is introduced to sample from the complicated
joint distribution and then to estimate the multiple pulse locations
and frequency contents for each pulse simultaneously.

In the proposed algorithm, a multitaper spectrum is adopted as
the proposal distribution to provide the initial guess for frequency es-
timation. The rjMCMC algorithm is then used to explore the regions
around obvious peaks in the multitaper power spectrum. Further-
more, as the number of frequencies and their values are all unknown,
the reversible jump MCMC technique is incorporated to select the
model order of the frequency automatically.

4.3. Random Walk Update for Pulse Locations

Based on the initial guesses given by aforementioned combination
algorithm of VAD and wavelet denoising for envelope detection, a
random walk perturbation is adopted as the proposal distribution for
refinement of the pulse location estimates. Specifically, the update
of each changepoint depends on its previous value and performs a
local exploration of the initial guess, which can be described as:

T ∗|T ∼ N (T, σ2
T ). (5)

where T and T ∗ are previous state and new state of the changepoint
respectively. N (·) represents the normal distribution with mean T
and variance σ2

T .

4.4. Refinement Algorithm Based on a Parametric Model

The refinement of the parameter estimates, for both pulse location
and frequency content, using a parametric model with numerical
Bayesian method, consists of two steps in each iteration. Firstly, the
pulse locations are updated by random walk perturbation; secondly,
after the estimation of pulse locations, frequency contents for each
pulse can be updated using rjMCMC algorithm for a given specific
set of changepoints. The procedure is summarized in Algorithm 1.
Details of the birth, death and update moves can be found in [7].

Algorithm 1 rjMCMC Algorithm for Estimation Refinement

1: Initialization: set ({k, θk}(0)m , T
(0)
2m).

2: Iteration:
3: for i = 1 to numIteration do
4: Update each changepoint T

(i)
2m using random walk.

5: For each pulse segment m, update frequency contents:

6: a).Sample hyperparameters Λ and δ2.
7: b).Sample u from U(0,1). (uniform distribution)
8: if u ≤ b

k
(i)
m

then
9: perform birth move of a new frequency

10: else if (u≤ b
k
(i)
m

+ d
k
(i)
m

) then
11: perform death move of an existing frequency
12: else
13: perform update move of a frequency randomly
14: end if
15: c).Sample nuisance parameters akm and σ2

k.

16: end for

Table 1. Comparison of Accuracy between Coarse Estimation and
Estimation Refinement of Pulse Locations (start & end points) SNR
= 5dB

True Locations 450 600 750 900

Coarse Estimation 460 600 780 890

| �ε | 10 0 20 10

Estimation Refinement 448 598 750 900

| �ε | 2 2 0 0

5. RESULTS AND EVALUATION

5.1. Evaluate the Estimation System on Synthetic Signals

According to the characteristics of the multiple pulse echo signal
from ultrasound contrast microbubbles, the synthetic signal is sim-
ulated as several pulse segments with a sum of sinusoids in each
segment. This synthetic signal is used to evaluate the performance
of the whole estimation system.

The synthetic signal has 1500 data points, which consists of two
pulses. The first pulse locates between (450, 600) and has two fre-
quency components (0.2π = 0.6283, 0.6π = 1.8849); the second
one locates between (750, 900) and has three frequencies (0.4π =
1.2566, 0.8π = 2.5132, 0.3π = 0.9425). After the estimation pro-
cedure, the coarse estimation and the estimation refinement for pulse
locations are compared in Table 1. The error is calculated as the
sum of difference between true values and estimated values of each
pulse location. The error after estimation refinement is much less
than that of coarse estimation only. Moreover, the frequency con-
tents can be estimated at the same time with high accuracy {(0.6288,
1.8846); (1.2560, 2.5130, 0.9433)} compared to multitaper estima-
tion { (0.6250, 1.8860); (1.2552, 2.5145, 0.9440) }.

Furthermore, the above experiments has been repeated 100 times
with different noise realizations and amplitudes and phase compo-
nents. On average, the error of coarse estimation for pulse locations
is 20 whereas the error after estimation refinement is 5. For fre-
quency estimation, the error percentage of multitaper technique is
around 1% and the error percentage of rjMCMC algorithm is about
0.01%. As a result, the new estimation system indicates its superi-
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Fig. 3. Histogram of pulse locations for the first three pulses

ority in both the time domain and frequency domain.

5.2. Experimental Signal Analysis

In the following experiments, the microbubbles used for analysis in
this paper are "Definity " [10], which are exposed to ultrasound peak
negative pressure of 300kPa and transmit frequencies ranging from
1.1MHz to 3.2MHz. The raw signals produced from the microbub-
bles were preamplified, collected and stored. The multiple pulse
signal shown in Fig.2 was collected with peak negative pressure of
300kPa and transmit frequency of 1.48MHz. Fig.3 and Fig.5 show
histograms of the probability of pulse locations after estimation re-
finement {(269, 333), (548, 641), (715, 805), (969, 1040), (1082,
1145), (1191, 1259)}. The estimation result is also shown in Fig.2,
denoting the locations for six pulses: The dash line represents the
coarse estimation for pulse locations and the solid line represents the
pulse location estimation after refinement, which offers more accu-
rate estimates. For frequency estimation, Fig.4 depicts the histogram
of number of frequency components in each pulse:(5, 7, 5, 2, 2, 2).

The whole algorithm has been carried out for other available
data sets. The investigation indicates that the proposed estimation
system can estimate the number of pulses in the signal and their po-
sitions, as well as the number of frequencies in each pulse and their
corresponding values with very small errors simultaneously.

6. CONCLUSIONS

This paper proposes a novel estimation system for echo signals from
ultrasound contrast microbubbles. The system first obtains coarse
estimation by using non-parametric methods and then optimises the
estimation by incorporating a parametric model within a Bayesian
framework. The advantage is that it allows an automatic estima-
tion of frequencies for each pulse and the pulse locations at the same
time. Moreover, it exhibits improved frequency resolution compared
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to the Fourier analysis based techniques. Additionally, the paramet-
ric model introduced in the paper optimises the estimation of all
parameters of interest. As a result, the new estimation system re-
veals more attributes in both time and frequency domains, which
may broaden the research field in ultrasound contrast agents, espe-
cially in design of transmit pulsing regimes.

7. REFERENCES

[1] Gramiak R et al, “Echocardiography of the aortic root,” Invest Radio,
vol. 3, no. 356-366, 1968.

[2] E.Stride et al, “Microbubble ultrasound contrast agents, a review,” Eng.
in Medicine, vol. 217, 2003.

[3] Burns P.N. et al, “Higher harmonics of vibrating gas filled micro-
spheres, part one, simulations,” Ultrasonics, vol. 32, no. 447-453,
1994.

[4] Xander A et al, “Baseband velocity estimation for second-harmonic
signals exploiting the invariance of the doppler equation,” IEEE Trans.
on Bimedical Engineering, vol. 45, no. 10, October 1998.

[5] A.Davis et al, “Statistical voice activity detection using low-variance
spectrum estimation and an adaptive threshold,” IEEE Trans. on Speech
and Audio Processing, vol. 14, pp. 412–424, March 2006.

[6] X. Lu et al, “Removal of noise by wavelet method to generate high
quality temporal data of terrestrial MODIS products,” Photogram. Eng.
& Remote Sensing, vol. 73, October 2007.

[7] C. Andrieu and A. Doucet, “Joint model selection and estimation of
noisy sinusoids via reversible jump MCMC,” IEEE Trans. on Signal
Processing, vol. 47, no. 10, October 1999.

[8] D. G.Manolakis, V. K.Ingle, and S. M.Kogon, Statistical and adap-
tive signal processing:Spectral estimation, signal modelling, adaptive
filtering and array processing, McGrawHill, 1st edition, August 2003.

[9] P.C.Gregory, “A bayesian revolution in spectral analysis,” in Bayesian
inference and maximum entropy methods in science and engineering.
Amer.Inst.of Physics Proceedings, 2001, pp. 557–568.

[10] V.Sboros et al, “The measurement of backscatter from individual con-
trast agent microbubbles,” in Ultrasonic Symposium. IEEE, 2002, pp.
1945–1947.

604


