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ABSTRACT 
 

Independent component analysis (ICA) is a statistical 
and computational technique for revealing hidden factors 
that underlie sets of signals. We propose an improved ICA 
framework for group data analysis by adding an adaptive 
constraint to the mixing coefficients, namely, constrained 
coefficients ICA (CCICA). The method is dedicated to 
identification and increasing the accuracy of components 
that show significant group differences reflected in the 
mixing coefficients. Performance of CCICA is assessed by 
simulations under different signal to noise ratios. An 
application to multitask functional magnetic resonance 
imaging analysis is conducted to illustrate the advantages of 
CCICA. It is shown that CCICA provides stable results and 
can estimate both the components and the mixing 
coefficients with a relatively high accuracy compared to 
Infomax, hence is a promising tool for the identification of 
biomarkers from brain imaging data. 

Index Terms— Independent component analysis, 
functional magnetic resonance imaging, mixing coefficients, 
Infomax, joint ICA 
 

1. INTRODUCTION 
 

Independent component analysis (ICA) is a theoretically 
rich, extendable approach that uses higher order statistical 
information and can reveal hidden associations between 
variables whose explicit relationship is not well understood 
[1]. ICA has been increasingly applied to analysis of 
multimedia streams and brain imaging data with success. 

In the joint ICA application of multitask/multimodal 
(MTMM) fMRI data analysis [2,3], the MTMM data of all 
subjects are first preprocessed to produce an activation map. 
Then the activation images are flattened to vectors and 
stacked side by side with e.g. another task to obtain the 
observed data (subjects by voxels). Each task shares the 
same mixing matrix, and the components showing group 
difference are identified by a 2 sample t-test on the mixing 
coefficients to test whether their means are different. We 
have found that the component exhibiting the largest group 

difference don’t always have the smallest p value for the 2 
sample t-test, especially when the known sources added to 
each group have some variation. 

Motivated by the constrained ICA framework [4,5], we 
incorporate hypothesis testing knowledge as additional 
constraint into a general ICA cost function G(Y) which is 
usually maximized in order to extract ICs, where Y is a 
nonlinear function of the observed data. We expect to 
increase the average difference of the mixing coefficients 
while simultaneously maximizing G(Y). Thus, for a fixed 
number of group members, a higher statistic T value of a 
two-sample t-test, and hence a lower p value will be 
attained. The CCICA method can then be formulated by 
expanding the cost function and choosing an appropriate 
optimization strategy. 

In this manuscript, CCICA is introduced to Infomax 
ICA, and the joint CCICA is demonstrated with a two task 
fMRI data set. Note that since CCICA is designed for group 
analysis, it can be used for either single modality data or 
MTMM data. The use of MTMM data enables us to capture 
patient versus controls differences by using cross-
information between brain networks.  
 

2. METHOD 
 
2.1. Introduction to Infomax 
 
Infomax is a self-organizing learning algorithm which 
maximizes the information transferred in a network of 
nonlinear units [7]. The ICA framework is defined as 
equation (1), where the observed data X consists of 
measurements such as MRI images or speech signals. The 
components, S, contain independent sources such as brain 
activation networks or multiple speakers’ recordings as in  

SAX                                      (1) 
where X is assumed to be a linear mixture of components S, 
and A is the mixing matrix containing the loading 
parameters. The aim of ICA is to find the unmixing matrix 
W=A-1 so that WX is as close as possible to the true source 
S. Using natural gradient learning rules, the Infomax 
algorithm attempts to find the W matrix by maximizing the 
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entropy of the nonlinear output Y defined as  
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where P(Y) is the probability density function of Y, E is the 
expectation operator and H the differential entropy . 
 
2.2. CCICA model 
 
To provide for group inferences, the ICA model can be 
extended as  
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where the suffixes h and p denote healthy controls and 
patients, Ah, Ap are corresponding mixing coefficients 
matrix of which each column represents loading parameters 
for one shared component, their inverse matrixes Wh, Wp are 
key parts used to back-reconstruct sources for each group. 
The goal is to find the components that significantly 
differentiate the groups as measured by computing a two 
sample t-test of the mixing coefficients. 

We start by considering a fixed number of subjects, 
including hn  healthy controls and pn  patients. It is assumed 
that distributions of Ah,i, Ap,i have the same variance(If this 
assumption is violated, the unequal variance t-test can be 
used alternatively). The T statistic to test whether their 
means are different can be calculated as equation (5): 
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where the symbol " " is the average function, vector Ah,i  
Ap,i (the ith column of matrix Ah and Ap), denote the loading 
parameters of each group related with the ith component, s2 
is the unbiased estimator of the vector’s variance, 2ph nn  
is the number of degrees of freedom for two-tailed 
significance testing. The larger the absolute value of Ti, with 
the higher probability that the mixing coefficients’ average 
are significantly different for two groups. 

Therefore the cost function is constructed such that in 
addition to the given objective (output entropy in the case of 
Infomax) for achieving independence, the squared statistic 
Ti between Ah,i and Ap,i is selected as a constraint for joint 
maximization of C such that  
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where H(Y) is entropy of the nonlinear output,  is the 
weight of the T2 term, the suffix i represents the column 
index of the constrained component(s) that may differentiate 
two group significantly. We next discuss an adaptive 
approach to determine which components are constrained.  

 
2.3. Dynamic CCICA optimization 
 
The goal of ICA is to estimate the unmixing matrix W that 

maximizes the independence among the components. Most 
solutions depend on minimizing or maximizing a 
multivariate cost function. For the optimization process of 
CCICA, we emphasize two points: 1) dynamically 
constrained components and 2) adaptive constraint strength. 

First, the specific components constrained are not fixed, 
instead, they are allowed to vary during the optimization 
process. In practice, we first run Infomax for several 
iterations without a constraint and when the change W  
stabilizes, the corresponding T values are calculated and 
sorted for all components, one or more columns of matrix A 
(depending on the component number used) with the 
highest T2 values are constrained in this iteration. The fewer 
components we constrain, the more they fluctuate between 
iterations initially, but as W converges, the constrained 
components become fixed at every iteration. This flexibility 
provides an ability to update the components selectively. 
       Second, we adaptively adjust the constraint strength of 
the T2 term in the cost function C. Specifically, the learning 
rates are allowed to continuously change during the 
optimization. In most cases, the entropy term and the 2

iT  
term converge at different rates. To compensate for the 
differences, we first maximize entropy term using the 
natural gradient [7], then we optimize the 2

iT  term using 
a steepest ascent algorithm with a step length (learning rate) 
estimated from selected components at each iteration. Note 
that the entropy maximization should dominate the W 
update process, if the learning rate is too large, the 
constraint T2 may infringe upon the independence criterion 
and decrease the entropy, so the tendency of W  during the 
last l (i.e., l=10) iterations is used as a supervision to 
determine the learning rate. If the cost function is 
maximized, W  should decrease on the whole and 
eventually go to zero, otherwise the slope of the last l W s 
could increase. If this condition occurs, the learning rate is 
scaled down, ensuring that the maximum entropy attained. 
 
2.4. Performance evaluation metrics 
 
CCICA is designed to reliably obtain desired ICs with high 
accuracy, which simultaneously can differentiate two 
groups as much as possible. Three metrics are selected to 
evaluate performance of CCICA: the smallest p value that 
determines the probability of whether two groups have 
significantly different mean, accuracy of the recovered ICs 
and accuracy of the mixing coefficients. The estimated 
components should be the same as the “true” sources; the 
correlation between the true source and the extracted 
component under different signal to noise ratios (SNRs) are 
used to indicate the component accuracy. Finally, we 
compute the correlation of constrained columns of the 
mixing matrix A with the real loading parameters to the 
mixing coefficients. 

 

594



                 CCICA                                    Infomax 
  IC         1         2         3        4    1         2         3         4 

Correlation of ICA loading with true mixing coefficients 
A 0.996  0.898  0.991 0.934 0.996  0.819  0.992 0.912 
Ah 0.973  0.972  0.992 0.974 0.981  0.999  0.993 0.969 
Ap 0.998  0.912  0.994 0.906 0.998  0.254  0.995 0.867 
Correlation of extracted IC with true source 
Uh 0.790  0.910  0.944  0.841 0.790  0.887  0.943  0.892 
Up 0.811  0.711  0.965  0.912 0.831  0.635  0.965  0.625 
p value of 2 sample t-test between Ah and Ap 

 
 
 
 
Low
SNR
  = 
12.5

p 0.359  0.952  0.279  0.003 0.415  0.774 0.328   0.012 
Correlation of ICA loading with true mixing coefficients 
A 0.997  0.856  0.992  0.927 0.996  0.801 0.992  0.901 
Ah 0.980  0.997  0.994  0.993 0.983  0.999 0.994  0.956 
Ap 0.999  0.779  0.995  0.877 0.998  0.387 0.995  0.858 
Correlation of extracted IC with true source 
Uh 0.845  0.926  0.975  0.908 0.845  0.889 0.975  0.914 
Up 0.835  0.699  0.997  0.861 0.845  0.650 0.997  0.568 
p value of 2 sample t-test between Ah and Ap 

 
 
 
 
High
SNR
   = 
31.9

p 0.343  0.905  0.252  0.003 0.402  0.725 0.313  0.013 
      Table 1 Simulation results under different SNR

                                          (b) 
Figure 1.   (a) Real sources for each group (b) back-
reconstructed ICs derived from CCICA at SNR=12.5 

0 500 1000 1500 2000

sources for healthy controls

0 500 1000 1500 2000

sources for patients

 

 

0 500 1000 1500 2000

Uh

0 500 1000 1500 2000

Up (a)  

3. SIMULATED SIGNALS TESTING 
 
We demonstrate performance of CCICA compared with 
standard Infomax using synthetic data created according to 
the joint ICA framework in which the observed data of two 
tasks share the same mixing matrix. Infomax when used 
with the sigmoid nonlinearity performs well with super-
Gaussian signals, so four zero-mean super-Gaussian signals 
each including two tasks in length of 1000 samples were 
randomly mixed to obtain 16 mixtures. The mixing matrix A 
is vertical combination of two 8×4 matrices Ah and Ap with 
uniform distribution in range of [0–1]. The average of the 
fourth column of Ah is set to be larger than the 
corresponding one of Ap, so that mixing coefficients of this 
component shows significant group difference in the mean. 

Sources are allowed to exhibit some variation between 
the two groups. Specifically, the shapes of true sources for 
two groups are similar, as figure 1(a) shows, but with 
different frequency and width of the signal periods. 

All components are constrained here since there are only 
four ICs. As expected, CCICA converged to produce the 
output signals identical to the desired sources under 
different SNRs. Figure 1(b) displays the back-reconstructed 
sources Uh, Up by CCICA at low SNR, where

hhh XWU , 

ppp XWU .  

Accuracy of all recovered ICs and the mixing 
coefficients are estimated and listed in Table 1. Note that for 
the 4th component, both algorithms showed it had significant 
group different mixing parameters and CCICA showed the 
smallest p value. For the 2nd component, correlations of 
either sources or coefficients attained from CCICA with the 
ground truth are increased remarkably in both SNR 
conditions relative to Infomax, confirming its effectiveness. 

4. APPLICATION TO MULTITASK FMRI DATA 
 
An approach to examine the “coupled” activation across 
multiple tasks has been proposed and applied to fMRI data 
[2]. We found that when the artificially added sources are 
same for two groups, Infomax works well by extracting 
them directly with the smallest p value. But when working 
with real data which is noisy, Infomax does not always get 
optimum results.  

As figure 2 (a) shows, we created hybrid data by 
superimposing variant sources on actual SPM contrast 
images generated from the auditory oddball and Sternberg 
tasks. For healthy controls, it is a 21×21 half-cycle sinusoid 
pattern, and for patients, the pattern is contra-rotated by 45o. 
The mixing coefficients are random numbers drawn from a 
uniform distribution. The ranges used were [1.5–0.5] and 
[0–1] for patients and controls respectively. 

CCICA and Infomax are then used to perform joint ICA 
on the mixed data to extract maximally spatially 
independent maps for each task that are together by a shared 
loading parameter under the contrast to noise ratio (CNR) of 
5. CNR is computed as the maximum value of the known 
source divided by the standard deviation of the fMRI data at 
the same voxel. 

The first three components extracted from the two 
algorithms show a significant difference between groups. 
Figure 2(b) illustrates the three components sorted by two 
sample t-test p values. It is obvious that the component 
ranked first in CCICA with p<4.03e-5 is the IC that we 
expected, with known sources showing at the right position 
of both features. However, the corresponding IC in Infomax 
is only sorted third with p<0.1199, hence not showing a 
significant group difference. Note that the shape of the 
activations is almost identical to the sources we added to the 
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Figure 2 (a) generation of hybrid data (b) the first three 
ICs sorted by p value derived from two ICA algorithms  

                      Infomax                        CCICA               
Order        AOD           SB               AOD              SB 
by  p 
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    p= 0.0058, DJ=0.5329   p= 4.03e-05, DJ=2.7428
 
 

      p= 0.1974, DJ=0.4164   p=0.0042, DJ=0.3779 
 

      p= 0.1199, DJ=2.9945     p=0.0091, DJ=0.1718 

(a) 

(b) 

CCICA                                    Infomax 

Figure 3  Correlation of the loading parameters of the desired 
IC extracted from two algorithms with the ground truth. 
(patients are coded in blue circles, controls in red points)
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patients, which may be because patients have higher mean 
of loading parameters than controls when mixed. Also, we 
calculate the J divergence between the back-reconstructed 
source distributions for controls and patients. The desired 
IC from two ICA algorithms both show the highest 
divergence value among all the unmixed ICs, which 
confirmed that it is the right source that shows the largest 
group difference. 

 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
    
  The correlation between loading parameters of the desired 
ICs and the true mixing coefficients are calculated to 
determine the mixing coefficient accuracy. As expected, the 
first component of CCICA and the third component of 
Infomax again show the highest correlation. Figure 3 plots 
the loading parameter versus the ground truth (patients are 

coded in blue circle, controls in red points). In both cases, 
the controls showed a lower mean than the patients did, and 
CCICA outperformed Infomax with a higher unmixing 
accuracy (0.8276 vs. 0.5576). In addition, the IC with the 
largest two sample t-test result is consistent with the 
divergence sort order. 
     The presented results support the claim that, by incorpo-
rating an additional constraint with ICA, CCICA can better 
identify the IC showing largest group difference compared 
to standard Infomax which shows less consistent results. 

 
5. CONCLUSIONS 

 
We present a novel algorithm, CCICA, to extract 

independent components that show significant group 
differences in the mixing coefficients. The problem is 
formulated using the constrained ICA framework, and prior 
knowledge of group membership is incorporated into 
conventional entropy maximization algorithms. 
Applications to both simulated signals and real multitask 
fMRI data demonstrated several advantages of CCICA. 
Compared to Infomax, CCICA can identify components and 
mixing coefficients with a relatively high accuracy at 
different SNR values.  

Note that CCICA can be applied to either single 
modality or to MTMM data. It has great potential for the 
precise group analysis of brain imaging data and specifically 
for the identification of features which may serve as 
potential biomarkers. 

The authors would like to thank the Mind Research 
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1R01EB005846. 
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