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ABSTRACT

Four new features for the analysis of breast masses are presented.

These features were designed to be insensitive to the exact shape

of the contour of the masses, so that an approximate contour, such

as one extracted via an automated segmentation algorithm, can be

employed in their computation. The features measure the degree

of spiculation of a mass and the local fuzziness of the mass mar-

gins. The features were tested for characterization (discrimination

between circumscribed and spiculated) and diagnosis (discrimina-

tion between benign and malignant) of breast masses, using 319

masses and three different classifiers. Approximately 90% and 76%

of correct classification in characterization and diagnosis, respec-

tively, were achieved.

Index Terms— Breast masses, Mammography, Pattern classifi-

cation, Diagnosis, Feature extraction.

1. INTRODUCTION

Analysis of breast masses in mammograms has been performed via

features obtained from the shape of the masses, texture features, edge

sharpness, spiculation measures, etc. [1–8]. Characterization of the

margins of masses is particularly relevant since spiculation (needle-

like structures radiating from the mass) and ill-defined margins are

usually associated with malignancy, while circumscribed (well de-

fined) margins indicate a mass that is probably benign. Texture fea-

tures have been extensively tested for characterization and diagnosis

of masses, with varying results among studies [3, 5]. In general,

these features alone have not produced results that are as good as

those obtained with other features.

Shape features are, according to some studies [1, 2, 6, 9], among

the most successful features for both characterization and diagno-

sis of breast masses. The shape of masses, however, is not always

clearly defined. This poses a problem because shape features, are

very sensitive to differences between shapes. Thus, the studies in

the literature that employ shape features have almost always relied

on a human expert to provide a manual segmentation of the masses

from which reliable features can be obtained [1–3, 6].

Edge sharpness features, including acutance, contrast, and other

gradient measures and variations of these, measure how crisp the

transition between a mass and its surrounding background is. If

the transition is abrupt (e.g. a circumscribed mass in a low den-

sity background), computing the acutance measure is straightfor-

ward. However, if the transition is fuzzy (e.g. a spiculated mass

in high density background), the main difficulty resides in actually
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locating and defining the transition region, before one can start to

measure its characteristics. Edge sharpness features, as shape fea-

tures, have proven to be quite successful for classification of masses.

However, like shape features, the edge sharpness features are sen-

sitive to differences in the shape of masses. This is because these

employ the intensity values of the image along the direction of the

normal to the shape at every point on the boundary of a mass [3, 5].

A major drawback of these features, as these are currently defined, is

that their computation is unfeasible for automated computer methods

alone. Most of the studies that include these features have employed

manually-drawn contours of the masses.

The consistency of the success that can be obtained with shape

and edge sharpness measures may be overestimated by some of the

results reported in the literature, where manually-drawn contours

have been used to extract the features. It is doubtful that such lev-

els of performance can be achieved by the same features without the

manually-drawn mass contours. In this paper we propose four fea-

tures designed to use as little information as possible from the con-

tour of the masses, so that an approximate contour (such as one ex-

tracted via an automated segmentation algorithm) can be employed

in their computation. The use of automated contours and robust fea-

tures could improve the efficiency of mammographic screening pro-

grams without a decrease in performance.

2. IMAGE DATABASE

A set of images from the mini-MIAS [10] database and from the

DDSM [11] database are used for validation of the results. The test

set consists of 319 regions of interest (ROIs) with 167 circumscribed

masses and 152 spiculated masses. The selection of cases included

lesions with different degrees of subtlety and different sizes, from

images with different breast-tissue densities, and lesions of benign

and malignant diagnoses (155 benign, 164 malignant). The ROIs

were all adjusted to be 256×256 pixels at 200 μm per pixel and 8

bpp (256 gray levels); no masses larger than 256×256 pixels were

included in the set. Manual segmentations were produced based on

the intensity and gradient magnitude of the mammograms and the

annotations provided by the databases. These are regarded as ground

truth (GT) of the boundary of the masses. An ellipse called the guid-

ing ellipse was obtained (using a least-squares curve fitting proce-

dure) for each of the GT boundaries. The set of guiding ellipses was

then used as a set of approximate boundaries, as if these had been

produced by a hypothetical automated segmentation algorithm. In

this way, the evaluation of the features can be performed indepen-

dently from the performance of a real automated-segmentation algo-

rithm. The set of GTs of the boundaries was employed exclusively

to obtain the set of guiding ellipses, and in no other procedure.
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3. FEATURES

3.1. Radial to Tangential Signature Information

The first feature is a measure of similarity between three different

edge signatures of a breast mass. One of the signatures, the om-

nidirectional edge signature, contains all of the edge content in the

mammographic image. The other two signatures, the radial edge sig-

nature and the tangential edge signature, are designed to retain only

the edge content that appears oriented in a certain direction. Using

a similarity measure one can compare the edge signatures of a mass

in a mammographic image. From such a comparison it is possible

to obtain an indication of the characteristics of the mass in terms of

the similarity measure. This is the rationale behind our first feature,

which is formally described below.

Consider a log-Gabor function [12, 13] with a transfer function

G. A bank of oriented filters, Fn,k is defined by:

G(w) = exp(−(log(w/w0)
2)/2(log(σw))), (1)

G(θ) = exp(−(θ− θ0)/2σ
2

θ), (2)

Fn,k = G(wn)G(θk), (3)

where w0 is the centre frequency of the filters, σw is used to obtain

constant-shape ratio filters, G(θ) is a Gaussian spreading function

which acts as an angular envelope oriented in direction θ, σθ is the

standard deviation of G(θ) in the angular direction. The subscripts

n and k indicate a particular scale (n) and orientation (k) of a filter

in the filter bank.

Let I be the 2-D DFT of a ROI containing a breast mass, with

the mass centred on the ROI. Then the radial response rn,k, the tan-

gential response tn,k , the radial edge signature R(i, j), the tangen-

tial edge signature T (i, j) and the omnidirectional edge signature

O(i, j) of the ROI are given by:

En,k = F−1[IFn,k], (4)

rn,k = |En,k|G(θk), (5)

tn,k = |En,k⊥|G(θk), (6)

R(i, j) =
∑

n

∑

k

rn,k(i, j), (7)

T (i, j) =
∑

n

∑

k

tn,k(i, j), (8)

O(i, j) = max
n,k
|En,k(i, j)|, (9)

where En,k represents the complex response of one filter for a cer-

tain scale n and orientation k, and k ⊥ is used to indicate the orienta-

tion orthogonal to orientation k. The spatial horizontal and vertical

variables for the location of a pixel are represented by i and j, re-

spectively.

Once the edge signatures have been computed, the spatial por-

tions of the signatures that roughly correspond to the mass boundary

are selected. The selection of the signature regions corresponds to

a ribbon of 20 pixels centred on the guiding ellipse of each mass,

which represents an estimate of the area where the boundary of each

mass is located. This procedure is illustrated in Fig. 1.

Let RB̂ , TB̂ and OB̂ , represent the selected portions of the ra-

dial, tangential and omnidirectional signatures, respectively, and let

M(X;Y ) represents the 2-D mutual information [14], between im-

agesX and Y .Then, the dimensionless feature SpSI , can be defined

as:

SpSI =
M(OB̂ , RB̂)

M(OB̂ , TB̂)
. (10)

Fig. 1. A: Example of a spiculated mass, its GT, and guiding ellipse.

B: The hatched region represents the locations to which the selection

of pixels for computation of the SpSI and SpGO is restricted. The

region is a ribbon of pixels around the guiding ellipse in A.

The larger the value of SpSI for a given mammographic mass,

the most likely it is that the mass is a spiculated mass.

3.2. Relative Gradient Orientation

Our second feature is a spiculation measure based on the relative

gradient orientation of pixels on spiculations, SpGO. Spiculations

appear as linear structures with a positive image contrast. As a re-

sult of this, the gradient directions at image pixels on or close to

the spicules have approximately the same orientation relative to the

spicules. Spicules develop in an approximately radial direction to

the mass, and the gradient at the pixels on a spicule is orthogo-

nal to the direction of the spicule (Fig. 2-A). The SpGO feature

exploits this relationship between the image gradient direction and

the spicules direction to discriminate between spiculated and non-

spiculated masses. In the ideal case of a perfectly circular mass, the

angle θ between the gradient g and the line PP ′ is the same as the

angle between g and the line CP ′, and this angle is approx. π/2
(Fig. 2-A). In a real case the mass is not circular. Thus the angle θ
between g and PP ′ is different than the angle β between g and CP ′

(Fig. 2-B). Our feature measures the angle β (an approximation of

θ), with the advantage that the boundary point P is not needed to

measure it.

Our SpGO feature is defined as the average value of the sine

function of the angle β, computed over a selection of pixels around

the mass. In order to select the pixels we employ a feature known as

the Phase Congruence (PC) [15]. The PC is a dimensionless measure

of edge content with a range of [0-1]. Thus, it is possible to use a

threshold on the PC image to pick up increasingly (or decreasingly)

significant image features. A second restriction is imposed on the

location of the pixels selected. The location was limited to a ribbon

of 30 pixels around the guiding ellipse of each mass (Fig.1).

Let ĝi represent the unitary gradient vector at a pixel location

P ′i , and ĉi represent the unitary vector with the direction of the line

CP ′i joining the centroid of the mass, C, and the selected pixel P ′i .
Then, the SpGO is mathematically expressed as:

SpGO =
1

N

∑

i

sin(arccos(ĝi · ĉi)), (11)

i ∈ {A ∩ (PC(x, y) > α)}, i = 1, 2, . . . , N.

where N is the total number of selected pixels, A represents the

selection-allowed region (see Fig. 1-B), PC(x, y) is the phase con-

gruence value of the pixel at location (x, y), and α ∈ (0 − 1) is a

586



θθ
β

Mass Mass

g g

CC

A B

P
P P’

P’
Spicule

Fig. 2. The contour of the mass is represented by a circle, the line

containing the segment PP ′ represents a spicule, and the vector g
represents the gradient direction at point P ′ on the spicule. A: Ideal

case of a perfectly circular mass. B: In a real case the mass is not

circular, and the angle θ is different than the angle β
.

threshold on the phase congruence that becomes a parameter of the

SpGO feature.

3.3. Measures of the fuzziness of mass margins

These two features are measures of the local fuzziness of the mass

margins. The method to compute these is more easily implemented

and described on the polar-variable representation of the ROIs. In

this representation, (x, y) �→ (r, θ), with the centroid of the mass as

the origin of the transformation, r = 1, 2, . . . , 128 (maximum valid

radius in ROIs of size 256× 256), and θ = 1, 2, . . . , 360. Let (i, j)
represent the indexes in the polar representation of the ROIs.

First we compute the derivative (first or second order) in the ra-

dial direction. Next, we find the pair of points, separated a fixed

distance apart along the radial direction, δi, for which the differ-

ence between derivative values is maximum. This is done along the

angular variable. The location halfway between these points is the

location of the strongest edge in the radial direction, which we use

to characterize the mass margins. The location of the strongest-edge

is restricted to a band of pixels around the guiding ellipse to reduce

possible noise being included. By computing the average of the ra-

dial difference between strongest-edge locations along the tangential

direction, we obtain an indicator or measure of the fuzziness of the

mass margins. This is mathematically expressed as:

dk(i, j) = |pk(i− δi, j) − pk(i+ δi, j)|, (12)

mk(j) = argmax
i
dk(i, j), (13)

Fzk =
1

J

∑

j

|mk(j)−mk(j + 1)| (14)

where pk(i, j) represents the k-th order difference in the radial di-

rection, k = {1, 2}, and J represents the maximum of index j. It

should be noted that in the definition of the features Fz1 and Fz2
(Fz stands for fuzziness of the mass margin), the radial direction is

being employed as a rough approximation to the direction which is

normal to the mass contour (which we assume is unknown). Thus,

the shape of the masses are implicitly assumed to be circular.

4. EXPERIMENTAL RESULTS

The characterization (circumscribed vs. spiculated classification)

and diagnosis (benign vs malignant classification) abilities of the

features presented in Section 3 were tested using three binary classi-

fiers. The Fisher’s Linear Discriminant (FLD), a Bayesian classifier

(BCLS), and a support vector machine (SVM). Our whole set of 319

masses was employed in this test under a leave-one-out classification

framework. None of the parameters of the classifiers were optimised

for our particular dataset. The features were tested individually and

in combination. The main results of the experiments are reported in

Table 1. In the case of SpGO , the number reported is the perfor-

mance with α = 0.5, which is a value in the middle of the range of

this parameter (in experiments not reported here due to space limita-

tions, it was found that SpGO is not very sensitive to the value of α
when this parameter is in the middle range).

Table 1. Performance - Characterization and Diagnosis.

Features Charact. (%) Diagnosis (%)

or feature-sets Avg. Std. Dev. Avg. Std. Dev.

Fz2 & SpSI 89.8 0.7 76.1 0.3

All features 89.6 1.0 75.9 0.3

Fz2 & SpSI & SpGO 89.4 1.0 76.0 0.6

Fz1 & Fz2 & SpSI 89.1 0.8 75.8 0.5

Fz1 & SpSI & SpGO 88.5 0.8 73.4 0.6

Fz1 & SpSI 87.7 0.5 73.5 0.6

SpSI 87.6 0.4 73.2 0.4

SpSI & SpGO 87.3 0.2 73.1 0.3

Fz2 & SpGO 86.3 0.2 73.1 0.3

Fz1 & SpGO 85.1 0.4 72.1 0.0

Fz1 & Fz2 & SpGO 84.8 0.5 72.8 0.3

SpGO 79.6 0.8 66.5 0.6

Fz1 75.3 0.2 67.2 1.0

Fz1 & Fz2 75.0 0.7 66.8 1.2

Fz2 71.7 0.2 67.0 0.3

In order to test the robustness of our features to variations of the

boundary used as a guide in their computation, the classification ex-

periments described above were performed several times, each time

using a set of guiding ellipses slightly modified from the original set.

The original set of ellipses were rotated fifteen degrees clock-

wise at a time, producing a super-set of ellipses rotated 0, 15, 30, 45,

60 and 90 degrees with respect to their original orientation. As the

ellipses are rotated in increasing amounts, the area overlap measure

(AOM, a measure of the agreement between two image regions) be-

tween the rotated and the original ellipses decreases. In this way we

simulated the effect of segmentations with varying degrees of agree-

ment to the actual shape of the masses. The main results of this test

are reported in Table 2, where the first column contains the average

AOM between the original and rotated ellipses, computed over the

whole test dataset. The corresponding amount of rotation from the

original orientation is also given.

5. DISCUSSION AND CONCLUSIONS

Considering the average (over the three classifiers) characterization

performance of each single feature and ordering the features from

most to least efficient, we have: 1.- SpSI , 2.- SpGO, 3.- Fz1, and

4.- Fz2. This result is not surprising, since we know that the Fzk
features contain more approximations than SpGO, which in turn also
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Table 2. Robustness test - Characterization and Diagnosis.

Avg. AOM Charact. (%) Diagnosis (%)

(rotation) Fz1 Fz2 SpGO Fz1 Fz2 SpGO
0.89 (0◦) 75.3 71.7 79.6 67.2 67.0 66.5

0.86 (15◦) 74.9 71.1 79.6 67.8 66.2 67.8

0.80 (30◦) 71.4 71.2 79.0 66.7 65.5 65.7

0.76 (45◦) 71.1 71.3 77.7 65.8 65.6 65.3

0.72 (60◦) 72.8 68.8 79.6 67.8 65.5 66.0

0.70 (75◦) 69.6 66.2 79.4 66.0 64.5 65.7

0.69 (90◦) 70.5 67.0 78.1 64.9 63.4 65.9

Average 72.2 69.6 79.0 66.6 65.5 66.1

Std. Dev. 2.2 2.3 0.8 1.1 1.2 0.8

contains more approximations than SpSI . Considering now the av-

erage performance obtained by combinations of features, we observe

that the difference between the top results is not statistically signif-

icant. The overall highest performance was obtained with the SVM

classifier and the set of all features, reaching 90.6 % characterization

success.

The robustness test shows that for a reduction of 20% of the

average AOM between the set of guiding ellipses and the set of GT

regions, the average range of variation of the characterization perfor-

mance is 4.3%, while the average range of variation of the diagnosis

performance is only 3%. The average standard deviation over all the

features is 1.4%. For the range of AOM considered, the classifica-

tion performance is quite stable and its decrease is about five times

smaller than the decrease of the segmentation quality. This results

demonstrate that the performances from the features are effectively

robust to changes of the boundary of masses. Furthermore, it should

be obvious that it would be useless attempting to classify the masses

in the dataset using shape measures obtained from the set of guiding

ellipses. Other popular features, such as edge sharpness measures

could also be affected by the missing boundary information. In con-

trast, the features presented in this paper achieve good classification

performance using the set of ellipses. In other words, our features

are, to some degree, insensitive to the accuracy of the mass bound-

aries, which is an advantage if the features are to be employed in

automated feature-extraction.

The classification results obtained by our features, in combina-

tion with commonly used classifiers employed in an off-the-shelf

fashion, demonstrate that effective characterization of breast masses

is possible without employing any of the commonly used shape fea-

tures. The performance achieved by our features in the character-

ization experiments (approx. 90% success) is comparable to some

of the best results reported in the literature [1, 2, 4–6, 16]. Using

our features in combination with complementary features (i.e. mea-

sures of other useful characteristics) as well as more sophisticated

and tuned classifiers can be expected to improve the classification

performance.
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