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ABSTRACT

DNA microarrays comprising tens of thousands of probe spots

are currently being employed to test multitude of targets in a sin-

gle experiment. Typically, each microarray spot contains a large

number of copies of a single probe designed to capture a single

target, and hence collects only a single data point. This is a waste-

ful use of the sensing resources in comparative DNA microarray

experiments, where a test sample is measured relative to a refer-

ence sample. Since only a small fraction of the total number of

genes represented by the two samples is differentially expressed,

a vast number of probe spots will not provide any useful informa-

tion. To this end we consider an alternative design, the so-called

compressed microarrays, wherein each spot is a composite of sev-

eral different probes and the total number of spots is potentially

much smaller than the number of targets being tested. Fewer spots

directly translates to significantly lower costs due to cheaper ar-

ray manufacturing, simpler image acquisition and processing, and

smaller amount of genomic material needed for experiments. To

recover signals from compressed microarray measurements, we

leverage ideas from compressive sampling. Moreover, we propose

an algorithm which has far less computational complexity than the

widely-used linear-programming-based methods, and can also re-

cover signals with less sparsity.

Index Terms: DNA microarrays, compressive sampling

1. INTRODUCTION

Sensing in DNA microarrays [1] is based on the process of hy-

bridization in which complementary DNA strands bind to each

other creating structures in lower energy states. Typically, the

surface of a DNA microarray comprises an array of spots, each

spot containing a large number of identical single-stranded DNA

sequences (probes) designed to capture copies of a single DNA

molecule (target) of interest. DNA microarrays are often used to

measure gene expression levels, i.e., to quantify the process of

transcription of DNA information into messenger RNA molecules

(mRNA). The information transcribed into mRNA is further trans-

lated to proteins, the molecules that perform most of the functions

in cells. Therefore, by measuring gene expression levels, we may

be able to infer critical information about the functionality of cells

or whole organisms [2], study diseases and the effects of drugs

on them [3, 4], etc. DNA microarrays are often used to compare

the gene expression levels of a test sample with that of a reference

sample. In a typical scenario, only a small fraction of the total

number of genes is differentially expressed. For instance, only

several hundreds genes (out of, say, 30, 000 in an entire genome),

may be differentially expressed. Therefore, a large fraction of a

microarray does not contribute any information about the subset of

the genes that are differentially expressed. To remedy this, in [5] a

microarray architecture comprising spots that contain mixtures of

several different probes was proposed, so that a signal measured

at each probe spot is potentially a combination of as many tar-

gets. This allows acquisition of multiple data points for each of

the targets being tested, including those that are indeed differen-

tially expressed. However, the signal recovery in the composite
microarrays of [5] does not exploit sparseness of the signal.

By leveraging ideas from compressive sampling, we can en-

able more economic usage of the sensing resources in composite

microarrays. The essential idea of compressive sampling is that

we may be able to recover an inherently sparse signal by using

far fewer measurements than what is typically needed for a signal

which is not sparse [6]. Compressive sampling is closely related to

the problem of solving an underdetermined system of linear equa-

tion with a sparseness constraint – which is precisely the prob-

lem of signal recovery in composite microarrays with fewer probe

spots than probes. In fact, by judiciously choosing probes com-

prising each spot, we may be able to recover sparse signal from

a microarray wherein the number of probe spots is significantly

reduced. We refer to such platforms as compressed microarrays.

Having fewer probe spots translates to lower costs due to cheaper

array manufacturing, simpler image acquisition and processing,

and smaller amount of genomic material needed for experiments.

Moreover, decreasing sample volume size is critically important

in order to further the applications of microarray technology in

diagnostics and environmental monitoring applications.

Typically, DNA microarrays are manufactured by either spot-

ting (i.e., printing) probe molecules in their allotted spots, or by

a direct probe synthesis on the array. While the former technique

can directly be applied to manufacturing compressed microarrays

(by, e.g., spotting appropriately selected mixtures of probes), it is

not immediately clear how the latter could be done. In the current

work, we focus on the former manufacturing technique, i.e., we

design, analyze, and experiment with the compressed microarrays

manufactured by probe spotting.

2. BACKGROUND

To evaluate the abundance of target molecules in a biological sam-

ple, DNA microarrays rely on hybridization, a process in which

single-stranded nucleotide sequences bind to each other creating

structures in lower energy states. In fluorescent-based systems,

the target molecules are labeled with fluorescent tags prior to the

actual experiment. When applied to the microarray and under ap-

propriate experimental conditions, labeled target molecules be-

gin hybridizing to the complementary probes. The process of

hybridization may take hours before it reaches the steady-state.

Then, the array is washed, at which point unbound target mole-

cules are removed. Finally, the fluorescent molecules attached to

5811-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



targets bound to probe spots are excited and their emission is mea-

sured to obtain an image. The image intensities are correlated to

the hybridization process, and thus provide the information about

the amount of targets under evaluation.

2.1. Compressive sampling
In compressive sampling, we are interested in estimating an n-

dimensional signal x which has no more than k non-zero entries.

(Note that we do not know a priori the locations of the non-zero

entries.) So, k < n; in fact, we frequently focus on applications

where k << n.

The vector x is not directly observable. Instead, we observe

m linear combinations of the entries of x,

yi =

n�
j=1

Aijxj , i = 1, 2, . . . , m, (1)

where k < m < n. In other words, the number of measurements

that we collect is smaller than the size of the vector x, yet larger

than the number of its non-zero entries. Collecting the coefficients

Aij into an m× n matrix A, we can write (1) in a matrix form

y = Ax. (2)

The underdetermined system of equations (2) may, in principle,

be solved by using the fact that the vector x is sparse. In partic-

ular, we could consider all possible combinations of k columns

of A, and attempt to solve the corresponding system of equations

which is overdetermined (since each one has m equations with k
unknowns). Assuming that each of these combinations of columns

forms a matrix with a full rank, at least one of the overdetermined

systems will have a solution. This solution determines the posi-

tions and values of the non-zero entries in x. However, the out-

lined approach is clearly practically infeasible.

On the other hand, for a long time it has been known that

constrained l1 minimization,

min
x, Ax=y

‖x‖1, (3)

as well as the related constrained quadratic programming

min ‖y −Ax‖2 subject to ‖x‖1 ≤ β, (4)

where ‖x‖1 = � n
i=1 |xi| denotes the l1-norm of the vector x,

and β is an appropriately chosen constant, perform well when em-

ployed for finding sparse solutions (see, e.g., [9]). Only recently

there have been theoretical results justifying the performance of

the constrained l1 minimization. These results show that, for mea-

surement matrices A which satisfy certain conditions, the con-

strained l1 minimization recovers the solution if the unknown vec-

tor x is sparse enough, i.e., if the ratio k/n is sufficiently small

[7].

Finally, we should mention that, in the course of preparation

of the current paper, we became aware of the related work [11],

which also proposes the use of compressed sensing techniques.

However, unlike our method which involves printing several dif-

ferent probe types in each spot of the microarray (and therefore

leads to a sparse measurement matrix – see the section below),

[11] proposes the design of probes, each of which can potentially

capture several different targets. We believe that the design of

such probes can be quite challenging. Moreover, calibrating the

array (in the sense of determining the strength of the binding of

each target analyte to its corresponding probe) can be a problem.

Our approach, however, can use already-designed probe sets and

simply requires mixing a number of them prior to spotting them

on the array – a procedure which is readily feasible.

3. COMPRESSED MICROARRAYS

When quantifying a sparse signal, compressive sampling provides

cost-efficient utilization of the sensing resources. In particular,

we recall from Section 2.1 that a sparse signal may be recovered

from a small number of linear combinations of its components.

The compressive sampling ideas are relevant to the applications

of DNA microarrays in gene expression profiling, where the gene

expression levels of a test sample are compared with the gene ex-

pression levels of a reference sample. Since in practical scenarios

only a small fraction of the total number of genes is differentially

expressed, the difference of the signals produced by the two sam-

ples is sparse. Moreover, linear combinations of the signal compo-

nents may be acquired by the composite probe spots comprising a

mixture of several probe sequences as in [5]. The sparseness con-

straint, on the other hand, suggests possible recovery of the signal

from potentially far fewer probe spots than the total number of

probe sequences composing the spots of the microarray.

In [12], we developed a statistical model for microarrays, which

is directly applicable to the compressed microarrays. In particu-

lar, for a compressed microarray with n spots containing probes

designed to quantify m different targets, we can write

y = Ax + w + v, (5)

where y denotes the n-dimensional measurement, x denotes the

m-dimensional data vector (the number of copies of each tar-

get), v is the n-dimensional zero-mean iid Gaussian additive noise

due to instrumentation and other biochemistry-independent noise

sources, w denotes the shot-noise (i.e., zero-mean iid Gaussian

noise with covariance proportional to the signal – see, e.g., [12]),

and where A is an n × m binary matrix containing information

about probe mixing. In other words, the (i, j) element of A is non-

zero if and only if the jth target can bind to some of the probes in

the ith spot. We limit the entries in A to binary 1/0 for the sake of

manufacturing simplicity, e.g., to impose the constraint that each

microarray spot contains an equal amount of different probes com-

prising it. Each row of the matrix A corresponds to a probe spot.

The composition of the ith probe spot, 1 ≤ i ≤ m, is determined

by the positions of ones in the ith row of A. Moreover, the number

of different probes in the ith spot is equal to the number of ones in

the ith row of the matrix A.

In a two-color microarray experiment, we are comparing two

samples characterized by data vectors x1 and x2, and are inter-

ested in finding differentially expressed genes, i.e., finding non-

zero entries of the vector x = x1 − x2. Defining y = y1 − y2,

w = w1 −w2, and v = v1 − v2, we can write

y = Ax + w + v. (6)

The vector x in (6) is sparse, i.e., it has a small number of entries

that are non-zero (or significantly larger than zero). Recalling the

discussion of compressive sampling, it should appear clear that

since x is sparse, one may be able to recover it using (3) or (4).

We should briefly mention the important issue of probe de-

sign. Two among the most important properties of microarray

probes are their sensitivity and specificity. Sensitivity is a mea-

sure of how strongly a probe reacts with the target which it is
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supposed to capture. Specificity, on the other hand, is the ability

of a probe to discriminate between targets, i.e., its ability to ignore

(do not bind or cross-hybridize to) other targets. In (6), we have

implicitly assumed that all probes are equally sensitive and that

there is no probe-target binding due to cross-hybridization. The

scenario wherein these assumptions do not hold and techniques

which take that into account are considered in [12]. Imbalanced

sensitivity, for instance, may be incorporated in the compressed

microarray model by appropriately scaling selected non-zero en-

tries of A. Imperfect specificity, on the other hand, would require

increasing the fraction of non-zero entries in A. In general, cross-

hybridization is detrimental to the complexity of the signal recov-

ery in compressed microarrays and thus special attention should

be payed to specificity of probes in compressed microarrays.
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Fig. 1. Demonstration of the sparse signal recovery in a com-
pressed microarray. Subfigures (a) and (b) show the test and the
reference signals, respectively, versus probe spot index. Subfigure
(c) shows the sparse signal, and subfigure (d) its estimate obtained
by solving an appropriate l1 minimization problem.

As an illustration, in Figure 1 we demonstrate the performance

of l1-constrained minimization employed for the detection of sparse

signals in a compressed microarray simulated according to the

model (6). The microarray comprises n = 24 probe spots, and

each spot contains a mixture of 24 different probes chosen from

the set of m = 96 available probe sequences, each designed to

capture one target of interest. So, the dimension of the matrix A is

24× 96. Moreover, the number of non-zero entries in x is k = 8.

Parameters of the microarray model (6) are chosen so as to mimic

a realistic experiment. As implied by Figure 1, the algorithm suc-

cessfully recovers sparse data from noisy observations.

4. ON SPARSE SIGNAL RECOVERY IN APPLICATIONS
WITH SPARSE COEFFICIENT MATRICES

When the coefficient matrix A is sparse, as in the compressed

microarray applications, the sparse signal recovery may be per-

formed more efficiently than in the cases where A has a general

structure. Let us consider the noiseless case and yi, the ith compo-

nent of the observation vector y. It is obtained as an inner product

of the ith row of A with the vector x,

yi =

n�

k=1

aikxk, (7)

where aik denotes the (i, k) entry of A. The sparseness of both A
and x implies that yi may be zero for some i; clearly, the chance

of this happening increases with the sparseness of A and x since,

as their sparseness increases, it becomes more likely that, for a

given i, we cannot find k such that both aik �= 0 and xk �= 0.

On the other hand, in the compressed microarray applications

A comprises zeros and ones while the non-zero entries of x are

real numbers. Therefore, if aikxk �= 0 for any k, it is highly

unlikely that yi in (7) is zero. Let Ki denote the set of indices k,

1 ≤ k ≤ n, such that aik �= 0. If yi = 0, we may conclude

that, with high probability, xk = 0 for all k ∈ Ki. Similarly, if

two or more entries in the observation vector y are equal and non-

zero, with high probability it is so because they measure the same

non-zero components of x. For instance, if yi = yj �= 0, they are

equal because not all xk, k ∈ Ki∩Kj , are zero. More importantly,

yi = yj �= 0 also means that all xk, k ∈ (Ki ∪ Kj) \ (Ki ∩ Kj),

are zero. In other words, if yi = yj �= 0, then xk = 0 for every

k such that aik �= ajk. Similar statements can be made if more

than two components of the observation vector y are non-zero and

equal.

Using the observations above, we can recover many of the

components of x and often all of them. If all of the components

are not found, one can attempt to find the rest via the constrained

l1 optimization problem (3). The advantage now is that, due to

the removal of many unknowns and equations, the computational

complexity of this step is significantly reduced.

We will refer to the procedure described above as the sparse
matrix pre-processing (SMPP) algorithm. The SMPP algorithm

is beneficial in several ways. The computational complexity of

the linear programming, often O(n3) where n is the size of the

problem, may be prohibitive for high-dimensional problems. On

the other hand, the complexity of the pre-processing described in

this section is linear in n. Therefore, the pre-processing algorithm,

which significantly reduces the size of the problem that needs to

be solved with linear program, may extend the practical feasibility

of sparse recovery to large problems such as those encountered in

microarray applications.

5. EXPERIMENTAL VERIFICATION

In this section, we present a series of proof-of concept experiments

designed and conducted to demonstrate data acquisition and signal

recovery in compressed microarrays. The goal was detection and

quantification of k ≤ 8 targets on an array otherwise capable of

testing n = 96 different targets. The desired probe spot compres-

sion ratio, m/n was chosen to be 4. Therefore, the compressed

microarray has only m = 24 probe spots, each comprising a com-

bination of a number of different probe sequences. Mixtures of the

probes, synthesized oligonucleotide sequences, were deposited to

their respective spots; the targets are cDNA molecules extracted

from Escherichia Coli. In particular, the targets were generated

using The RNA SpikesTM, a commercially available set of 8 puri-

fied RNA transcripts purchased from Ambion Inc. Typically, these

spikes are used in microarrays for calibration purposes and have

been chosen so that the eight sequences have little mutual cor-

relation. The RNA sequences were reverse transcribed to obtain

cDNA targets, which were then labeled with Cy5 dyes. We denote

the set of these 8 targets by T8.
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Eight oligo probes designed for capturing the targets in T8

were also purchased from Ambion Inc. Moreover, we acquired

88 probes designed to test the mouse genome. We denote the set

of Ambion probes as P8, and the set of mouse genome probes

as P88. The full set of 96 oligonucleotide probes, all of them

25 nucleotides long, is denoted as P96. The targets from T8 do

not cross-hybridize with (i.e., bind to) the probes from P88. We

designed m = 24 different mixtures, each comprising 24 probes

selected from P96. Each of the mixtures is deposited in one of

the spots of the compressed microarray. Content of the mixtures

determine composition of the coefficient matrix A; hence, each

row in A has 24 ones and 72 zeros.

The sparse signal vector x was constructed such that xk �= 0
if and only if k ∈ K = {1, 9, 17, 25, 33, 41, 49, 57}. In partic-

ular, x1 contains information about the amount of the first target

from the set T8, x9 contains information about the amount of the

second target from T8, etc. The targets from T8 were applied to

a microarray, where the individual amounts of targets were (5ng,

5ng, 2ng, 1ng, 10ng, 2ng, 1ng, 1ng), respectively. The experiment

was run overnight and the array, after washing away the sample,

was scanned. Figure 5 shows (a) the measured light intensities

of the compressed microarray spots, and (b) the recovered signal.

Clearly, the strongest 8 components of the recovered signal corre-

spond to the targets in T8.
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Fig. 2. Measured (a) and recovered (b) signal.

We conducted several more compressed microarray experi-

ments testing the targets from T8, sometimes adding complex bi-

ological background (i.e., total mice DNA) to the sample; in these

experiments, the strong components of the recovered signal vec-

tor correctly identified targets from T8 and thus the compressed

microarray proved capable of detecting their presence. As a part

of the future work, we intend to calibrate the array (i.e., determine

the affinities of the targets from T8 to their corresponding probes)

in order to enable precise quantification of their amounts.

6. SUMMARY AND CONCLUSIONS

We presented a novel DNA microarray architecture which we re-

fer to as compressed DNA microarrays. In compressed microar-

rays, each probe spot contains a mixture of a number of different

probes. By exploiting inherent sparseness of the signals in gene

expression studies, target detection and quantification can be per-

formed on an array with significantly reduced number of spots. To

this end, we used ideas from compressive sampling, and employed

linear programming to solve an appropriate l1-minimization prob-

lem. Both simulations as well as experiments confirm that if the

signal vector is sufficiently sparse, l1-minimization can recover it.

Practical limitations impose certain requirements on the de-

sign of compressed microarrays. This is reflected by the so-called

measurement matrix being sparse and comprising 1/0 entries. For

such a measurement matrix, efficiency of l1-minimization can be

significantly improved. To this end, we proposed an algorithm for

pre-processing the coefficient matrix and, in the process, deter-

mining a fraction of (if not the full) signal vector. The algorithm

reduces the size of (or completely eliminates need for) linear pro-

gram, and can recover signals with higher signal content than lin-

ear programming which requires more sparse signal.

There are many directions where the work presented in the

current paper can be extended. There is a need to find determin-

istic coefficient matrices that are sparse and have the properties

required for signal recovery. To this end, it is worth studying e.g.,

expander graphs [13], etc.
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