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ABSTRACT

Conventional uorescent-based microarrays acquire data af-
ter the hybridization phase. During this phase, the target analytes
bind to the capturing probes on the array and, by the end of it, sup-
posedly reach a steady state. Therefore, conventional microarrays
attempt to detect and quantify the targets with a single data point
taken in the steady-state. On the other hand, a novel technique,
the so-called real-time microarray, capable of recording the kinet-
ics of hybridization in uorescent-based microarrays has recently
been proposed in [1]. The richness of the information obtained
therein promises higher signal-to-noise ratio, smaller estimation
error, and broader assay detection dynamic range compared to
conventional microarrays. In the current paper, we develop a prob-
abilistic model for real-time microarrays and describe a procedure
for the estimation of target amounts therein. Moreover, leveraging
on system identi cation ideas, we propose a novel technique for
the elimination of cross-hybridization.
Index Terms: DNA microarrays, real-time, rate estimation

1. INTRODUCTION

Sensing in DNA microarrays [2]-[3] is based on hybridization,
a chemical processes in which single DNA strands bind to each
other creating structures in lower energy states. Typically, the sur-
face of a DNA microarray comprises an array of spots, each spot
containing a large number of identical single-stranded DNA se-
quences (probes) designed to capture DNA molecules (targets) of
interest. Microarrays are often used to measure gene expression
levels, i.e., to quantify the process of transcription of DNA infor-
mation into messenger RNAmolecules (mRNA). The information
transcribed into mRNA is further translated to proteins, the mole-
cules that perform most of the functions in cells. Therefore, by
measuring gene expression levels, we may be able to infer critical
information about the functionality of cells or whole organisms
[4], study diseases and the effects of drugs on them [5, 6], etc.

Today, the sensitivity, dynamic range, and resolution of the
conventional DNA microarrays is limited by shot-noise, cross-
hybridization, saturation, probe density variations, as well as sev-
eral other sources of noise and systematic errors in the detection
procedure. For instance, during a hybridization phase, including
the steady-state, the number of formed target-probe pairs varies
due to the probabilistic nature of hybridization. It has been ob-
served that these variations are very similar to shot-noise (Poisson
noise) at high expression levels, yet more complex at low expres-
sion levels where interference becomes the dominating limiting
factor of the signal strength [7]. The interference is due to cross-
hybridization, a process in which targets may bind not only to their
speci c probes but to others as well. On the other hand, saturation
may limit dynamic range if the number of targets is much larger
than the number of available probes.

Many of the aforementioned limitations of conventional mi-
croarrays stem from the fact that they attempt to characterize hy-
bridization process based on a single measurement of its steady-
state. In conventional microarrays, measured signals emanate from
the uorescently labeled target molecules which have hybridized
to the probes on the surface of a microarray. Typically, detection
of the captured targets is carried out by scanning and/or various
other imaging techniques after the hybridization step is completed.
The reason for this is simple: a large concentration of oating
(i.e., unbounded) labeled targets in the hybridization solution may
overwhelm the speci c signal emanating from the captured tar-
gets. Hence, the conventional microarrays typically do not allow
the presence of the solution during the uorescent and reporter in-
tensity measurements. Therefore, the solution is typically washed
away before the measurements are taken.

Intuitively, acquiring larger amount of useful data may im-
prove the signal-to-noise ratio (SNR) and the performance of mi-
croarrays. However, the conventional uorescent-based DNA mi-
croarray are incapable of providing such additional data. This is
the motivation behind real-time microarrays which are capable of
evaluating the abundance of multiple targets in a sample by per-
forming a real-time detection of the target-probe binding events
[1]. Real-time microarrays comprise probes that are labeled with
uorescent molecules and are used to evaluate the abundance of
targets that are labeled with quenchers, entities that deactivate
(quench) excited states of uorescent molecules (by, say, energy
transfer). In particular, in the event of a target-probe binding, the
quencher attached to the target sequence gets in close proximity
of the uorescent molecule located at the end of the probe se-
quence. The uorescence resonance energy transfer (FRET) in-
teraction between the uorescent molecule and the quencher re-
sults in quenching, which in turn indicates the amount of targets
captured. Since in real-time microarrays the oating targets are
not uorescently-labeled, it is possible to image the array as the
hybridization reaction is unfolding. This allows one to measure
the kinetics of the reaction in real-time by observing the rate at
which the light intensity of the interacting probes decrease (due
to the quenching). Moreover, real-time microarrays may employ
various time averaging schemes to suppress the Poisson noise and
uctuation of the target bindings. Due to all these advantages, the
real-time microarray systems achieve higher SNR, potentially sig-
ni cantly smaller estimation error, and broader detection dynamic
range compared to the conventional microarrays.

2. MODELING THE HYBRIDIZATION PROCESS
Consider the change in the number of target molecules bound to
the probes in one of the spots of a real-time microarray during the
time interval (iΔt, (i + 1)Δt). We can write

nb(i + 1)− nb(i) = [nt − nb(i)]pb(i)Δt− nb(i)pr(i)Δt, (1)
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where nt denotes the total number of the target molecules present,
nb(i) and nb(i+1) are the numbers of the bound target molecules
at t = iΔt and t = (i + 1)Δt, respectively. Moreover, pb(i) de-
notes the probability that a free target binds to a free probe during
the ith time interval; we note that pb(i) consists of two compo-
nents, the probability that a target molecule is close to a probe and
the probability that it binds to the probe. Finally, pr(i) denotes
the probability that a bound target is released from the probe it is
bound to during the ith time interval.

It is reasonable to assume that the probability of an event
where a bound target molecule gets released from a probe does
not change between time intervals, i.e., pr(i) = pr , for all i. On
the other hand, the probability of an event where a target binds to
a probe depends upon availability of the probes on the surface of
an array. If we denote the number of probes in a spot by np, then
we can model this probability as

pb(i) =

�
1− nb(i)

np

�
pb =

np − nb(i)

np
pb, (2)

where pb denotes the probability of the event where a target bounds
to a probe assuming an unlimited abundance of the probes. By
combining (1) and (2) and letting Δt → 0, we arrive to the fol-
lowing differential equation,

dnb

dt
= ntpb −

�
(1 +

nt

np
)pb + pr

�
nb +

pb

np
n2

b . (3)

Note that in (3), only nb = nb(t), while all other quantities are
constant parameters, albeit unknown. Before proceeding any fur-
ther, we will nd it useful to denote

α = (1 +
nt

np
)pb + pr, β = ntpb, γ =

pb

np
. (4)

Clearly, from (4) we can express pb, pr , and np as pb = β/nt,
pr = α − (1 + nt

np
)pb, and np = pb/γ. Using (4), we can write

(3) as

dnb

dt
= β − αnb + γn2

b = γ(nb − λ1)(nb − λ2). (5)

Note that γ = β/(λ1λ2). The solution to (5) is found as

nb(t) = λ1 +
λ1(λ1 − λ2)

λ2e
β( 1

λ1
− 1

λ2
)t − λ1

. (6)

We should point out that (3) describes the change in the amount
of target molecules, nb, captured by the probes in a single probe
spot of the microarray. Similar equations, possibly with different
values of the parameters np, nt, pb, and pr , hold for other spots
and other targets.

From (6) (or, perhaps more directly, (5)), it follows that

β = ntpb =
dnb

dt

����
t=0

. (7)

Thus, the slope of the hybridization curve at t = 0 contains in-
formation about the amount of the target. Note that what we actu-
ally observe in the real-time microarray experiments is a decrease
in the light intensity of uorescent tags as targets bind to probes
and quenchers ”turn-off” the light, which is essentially informa-
tion about np − nb, not nb; nevertheless, since

dnb

dt

����
t=0

= − d(np − nb)

dt

����
t=0

,

we can indeed estimate the amount of targets from the early-stage
hybridization data. This allows for broader dynamic range than
that of conventional microarrays since by not waiting for steady-
state of the reaction we alleviate the effect of saturation. More-
over, detection in real-time microarrays is potentially much faster
than in conventional microarrays – the former may be done within
minutes from the start of the hybridization process, while the latter
requires hybridization to reach steady-state which may take sev-
eral hours.

On a related note, inverse of the time constant re ecting how
fast nb(t) in (6) reaches steady-state is given by

τ−1
nb

= pb

��
nt

np
− 1

�2

+

�
pr

pb
+ 1

�2

+ 2
ntpr

nppb
− 1.

(8)

Clearly, the reaction rate α = τ−1
nb
is function of nt/np. In fact,

if nt >> np, the reaction rate is proportional to the amount of
targets since, in this case, α ≈ pbnt/np. Now, the larger the
number of targets, nt, the faster the reaction since more targets
compete for probes. For the same reason, the smaller the num-
ber of available probes, np, the faster the reaction. This can be
used to further expand the dynamic range of a real-time microar-
ray system. In particular, the dynamic range provided by a single
probe spot is limited by the span of observable reaction rates – say,
from seconds to hours. On the other hand, by having several probe
spots with different amounts of probe molecules, we can observe
a broader range reaction rates than with just one spot.

3. ESTIMATING PARAMETERS OF THE MODEL
Ultimately, by observing the hybridization process, we would like
to obtain nt, the number of target molecules. In addition, to fully
characterize the hybridization process (including the computation
of the reaction rate), we also need to nd the parameters pb , pr ,
and np. However, we do not have direct access to nb(t) in (6), but
rather to yb(t) = knb(t), where k denotes a transduction coef -
cient. In particular, we observe

yb(t) = λ∗1 +
λ∗1(λ

∗
1 − λ∗2)

λ∗2e
β∗( 1

λ∗
1
− 1

λ∗
2

)t − λ∗1

, (9)

where λ∗1 = kλ1, λ∗2 = kλ2, and β∗ = kβ. For convenience, we
also introduce

γ∗ =
β∗

λ∗1λ
∗
2

=
γ

k
, and α∗ = γ∗(λ∗1 + λ∗2) = α. (10)

From (9), it follows that

β∗ =
dyb

dt

����
t=0

. (11)

Assume, without a loss of generality, that λ∗1 is the smaller and λ∗2
the larger of the two, i.e., λ∗1 = min(λ∗1, λ

∗
2) and λ∗2 = max(λ∗1, λ

∗
2).

From (9), we nd the steady-state of yb(t),

λ∗1 = lim
t→∞

yb(t). (12)

So, from (11) and (12) we can determine β∗ and λ∗1, two out of
the three parameters in (9). To nd the remaining one, λ∗2, one
needs to t the curve (9) to the acquired data.

Having determined λ∗1, λ∗2, and β∗, we use (10) to obtain α∗

and γ∗. Then, we may attempt to use (4) to obtain pb, pr , np, and
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nt from α∗, β∗, and γ∗. However, (4) provides only 3 equations
while there are 4 unknowns that need to be determined. Therefore,
we need at least 2 different experiments to nd all of the desired
parameters. Assume that the arrays and the conditions in the two
experiments are the same except for the target amounts applied.
Denote the target amounts by nt1 and nt2 ; on the other hand, it is
reasonable to assume that pb and pr remain the same in the two
experiments. Let the rst experiment yield α∗1, β∗1 , and γ∗1 , and
the second one yield α∗2, β∗2 , and γ∗2 , where γ∗2 = γ∗1 . Then it can
be shown that

pb =
β∗1γ∗1 − β∗2γ∗2

α∗1 − α∗2
, pr = α∗1 − pb − β∗1γ∗1

pb
. (13)

Moreover,

np =
pb

kγ∗1
, nt1 =

β∗1γ∗1
p2

b

np, nt2 =
β∗2γ∗2
p2

b

np. (14)

4. CROSS-HYBRIDIZATION CANCELATION

Focusing on the early phase of the hybridization process and its re-
action rate opens up the possibility of suppressing cross-hybridization,
an event where interfering targets bind to probes designed to test
another target. When a single target analyte is present, the number
of available probe molecules, or equivalently the light intensity of
a probe spot, decays exponentially with time as Ce−αt, where α
is as in (4), and where C is determined from β, γ, and the initial
light intensity of the probe spot. If, in addition to hybridization
of the target of interest, a number of other targets cross-hybridize
to the same probe spot, the light intensity of the probe spot will
decay as the sum of several exponentials,

I(t) =

K�
k=0

Cke−αkt, (15)

where index k = 0 corresponds to the desired target, and k =
1, . . . , K correspond to the cross-hybridizing analytes. The reac-
tion rates for the different analytes differ due to different numbers
of analytes, binding probabilities, etc. (we omit explicit expres-
sions for brevity). Therefore, if we can estimate the reaction rates
from (15), we should be able to determine the number of mole-
cules for each of the analytes binding to the spot.

The real-time microarray system samples the signal (i.e., the
light intensity) of the probe spots at certain time intervals (multi-
ples ofΔ, say) and thus obtains the sequence

yn = I(nΔ) + v(nΔ) =

K�
k=0

Cke−nΔαk + v(nΔ),

for n = 0, 1, . . . , T , where T is the total number of samples, and
v(t) represents the measurement noise. De ning uk = e−Δαk ,
we may write

yn =

K�
k=0

Ckun
k + v(n). (16)

The goal is to (i) determine the value of K (i.e., how many analytes
are binding to the probe spot), (ii) estimate the values of the pairs
{Ck, uk} for all k = 1, . . . , K−1, and (iii) determine the number
of copies of each analyte.

The problem of determining the number of exponential sig-
nals in noisy measurements, and estimating the individual rates of

each component, is a classical one in signal processing and is gen-
erally referred to as system identi cation. The basic idea is that,
when the signal yn is the sum ofK exponentials, it satis es aKth
order recurrence equation

yn + h1yn−1 + · · ·+ hK−1yn−K+1 + hKyn−K = 0.

Furthermore, the uk are the roots of the polynomial

H(z) = zK + h1z
K−1 + · · ·+ hK−1z + hK .

In practice, since one observes a noisy signal, one rst uses the
measurements to form the so-called Hankel matrix, which is of
the form

�
����

yT/2 yT/2−1 . . . y1 y0

yT/2+1 yT/2 . . . y2 y1

...
...

. . .
...

...
yT yT−1 . . . yT/2+1 yT/2

�
���� .

When yn is the sum of K exponentials, the above Hankel ma-
trix has rank K, i.e., only K nonzero eigenvalues. When yn is
noisy, the standard practice is to compute the singular values of
the Hankel matrix and estimateK as being the number of signi -
cant singular values.

OnceK has been determined, one forms the (T −K + 1)×
(K + 1) Hankel matrix

�
����

yK yK−1 . . . y1 y0

yK+1 yK . . . y2 y1

...
...

. . .
...

...
yT yT−1 . . . yT−K+1 yT−K

�
���� (17)

and then identi es the vector [h1 . . . hK ] with the smallest right
singular vector of (17).

As mentioned earlier, the roots of H(z) are the desired uk,
from which we determine the rates αk and thereby the amounts of
targets present. While the main idea was outlined above, we may
use a variety of different techniques to nd the uk, including – but
not limited to – total least squares, ESPRIT, Prony’s method, etc.
[See, e.g., [8], [9], and the references therein.]

5. EXPERIMENTAL VERIFICATION

We designed and printed a number of custom 6 × 6 microarrays,
and employed them to test a set of oligo targets. (The microarrays
were manufactured and the materials for experiments prepared in
the Millard and Muriel Jacobs Genetics and Genomics Laboratory
at Caltech.) For each target analyte there are multiple probe spots
printed on an array, where different spots have different densities
of probe molecules. The probes were labeled with Cy5 dyes, and
the targets with BlackHoleTM quenchers.

We consider two experiments and the data acquired therein;
in the rst experiment, 2ng/50μl of the target is applied to the
microarray, whereas in the second experiment 0.2ng/50μl of the
target is applied. We focus on one of the targets and two of the
probe spots designed to test that target. One of the probe spots
contains twice as many probe molecules as the other one; we re-
fer to the former as high density and to the latter as low density
probe spot. The hybridization process data acquired at the high
and low density probe spots is shown in Figure 1 and Figure 2,
respectively.
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Fig. 1. The signal measured at a high density probe spot with 2ng
(top) and 0.2ng (bottom) of the oligo target applied to the array.

Based on the data in Figure 1, acquired by the high density
probe spot, the ratio of the time constants of the hybridization
process in the two experiments is 10.0. On the other hand, from
the data in Figure 2, acquired by the high density probe spot, the
ratio of the time constants of the hybridization process in the two
experiments is 11.6. This is predicted by the theoretical model
since the ratio of the amounts of target in the two experiments is
precisely 10.

Fig. 2. The signal measured at a low density probe spot with 2ng
(top) and 0.2ng (bottom) of the oligo target applied to the array.

We also note that the ratio of the time constants in Figure 1
and Figure 2 precisely re ects the ratio of the densities of the cor-
responding probe spots. In particular, for the experiments wherein
0.2ng of the target is applied, the ratio of the time constants of
the hybridization process acquired at the low density probe spot
(Figure 2, bottom) and the high density probe spot (Figure 1, bot-
tom) is 2, which is precisely the ratio of the densities of the probe

molecules in the high and low density probe spots.
Finally, it is worth pointing out that in the current example,

a conventional microarray would not give accurate answers at all.
In the experiment with 0.2ng of the target, it is not clear when the
reaction enters steady-state (clearly, it has not reached it even after
10 hours). On the other hand, in the experiment with 2ng of the
target, we hit saturation. Thus, had we used a conventional mi-
croarray, we would not be able to say anything quantitative about
the amount of the target.

6. SUMMARY AND CONCLUSION
We considered a novel real-time microarray platform and the prob-
lem of estimation of the amounts of targets tested therein. Unlike
conventional ones, real-time microarrays are capable of acquiring
the entire process of hybridization. We developed a probabilistic
model which encapsulates the hybridization process, and showed
how to estimate the parameters of the model, including the amount
of targets. We also presented experimental data verifying the va-
lidity of the model and demonstrated its applicability to the target
quanti cation.

On another note, the real-time microarray data acquisition en-
ables the elimination of cross-hybridization. In particular, if more
than one target binds to a microarray spot, each contributes an ex-
ponentially decaying component to the total signal acquired by the
real-time microarray. Leveraging system identi cation ideas, we
proposed techniques for separating the components of the com-
posite signal and thus identifying both the hybridizing as well as
cross-hybridizing target analytes. Eliminating cross-hybridization
is an important topic and requires further studies.
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