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ABSTRACT

In this paper, a generalized eigenvalue decomposition (GEVD)-
based approach is proposed to remove continuous interfer-
ences included in MEG observations. The GEVD-based ap-
proach can be interpreted as a general framework of pre-whitening
that can be combined with various types of signal separation
techniques such as principal component analysis (PCA), inde-
pendent component analysis (ICA) or adaptive beamforming
(ABF). An example of extracting movement-related brain ac-
tivities from single trial data is presented.

Index Terms— MEG, localization, extraction, GEVD

1. INTRODUCTION

It is of great interest to localize and extract stimuli or movement-
related brain activities. These target activities are usually buried
in various spontaneous activities and the signal-to-noise ra-
tio (SNR) is very low. If the spatial statistics of interference
signals such as covariance between the sensors are known in
advance, the interference can be effectively removed from the
observation by spatial filtering. Such process is termed “pre-
whitening,” and has been studied in various research fields.
In the field of brain imaging, Sekihara et al. [1] proposed
a combined approach of pre-whitening and adaptive beam-
former (ABF). In this paper, a pre-whitening method based
on generalized eigenvalue decomposition (GEVD) is exam-
ined. The GEVD-based approach was first introduced in the
source localization for radar and sonar by Roy et al. [2] and
was further developed for separation/enhancement of acous-
tic signals by Doclo et al. [3] and Asano et al. [4]. In Section
3, a GEVD-based method for the localization and extraction
of brain activities is developed and then applied to the mag-
netoecephalography (MEG) measurements in Section 4.

2. DATA MODEL

Let us denote the observation at MEG sensors as x(t) =
[x1(t), · · · , xM (t)]T , where M indicates the number of sen-
sors. By using the dipole model of the brain electrical activity
[5], the observation can be written as

x(t) = Aq(t) =

L∑
i=1

a(ri)q(ri, t) (1)

whereA = [a1, · · · , aL] is termed the lead-field matrix. The
vector ri = [xi, yi, zi, Θ] is the location vector where [xi, yi, zi]
denotes the three-dimensional location of the dipole while
Θ = {θ, ϕ, p} denotes the first and the second tangential and
the radial components [6]. The source q(ri, t) denotes a sin-
gle component of the dipole moment corresponding to ri.
In this paper, it is assumed that the observation consists

of the following three components: 1) movement or stimulus-
related activities (signals of interest, qS(ri, t)) with short du-
ration Ψ = [T1, T2]; 2) continuous activities throughout the
observation (interference, qI(rj , t)); and 3) sensor noise (n(t))
[1]. Based on this, the observation x(t) can be rewritten as

x(t) =

LS∑
i=1

aS(ri)qS(ri, t) +

LI∑
j=1

aI(rj)qI(rj , t) + n(t)

= xS(t) + xI(t) + n(t) (2)

The signal source qS(ri, t) is assumed to be zero for t �∈ Ψ.

3. GEVD APPROACH

3.1. Generalized Eigenvalue Decomposition

Let us denote the covariance of the observation as

K = E
[
x(t)xT (t)

]
, for t �∈ Ψ

R = E
[
x(t)xT (t)

]
, for t ∈ Ψ (3)
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GEVD ofK andR is defined as

Rem = λmKem (4)

where λm and and em denote the eigenvalue and eigenvector,
respectively. The eigenvectors of GEVD have the following
joint diagonalization property:

ET KE = I (5)
ET RE = Λ (6)

where Λ = diag[λ1, . . . , λM ] and E = [e1, · · · , eM ]. Equa-
tion (5) indicates the whitening effect of interference in which
the variance (power) of interference is reduced to “1”. Equa-
tion (4) is equivalent to the following standard eigenvalue de-
composition (SEVD):(

K−T/2RK−1/2
)
fm = λmfm (7)

The eigenvectors em and fm have the following relation [7]:

em = K−1/2fm (8)

3.2. Localization

The estimation of a spatial spectrum using the GEVD ap-
proach was introduced by [2]. When the MUSIC method [8]
is used , the spatial spectrum is given by

P (r) =
aT (r)a(r)

|aT (r)EN |2
(9)

where EN denotes the eigenvectors of GEVD corresponding
to the noise subspace as EN = [eLS+1, · · · , eM ]. Due to the
pre-whitening effect of GEVD, the interferences included in
the noise segments (t �∈ Ψ) are reduced and only the signals
of interest are localized.

3.3. Pre-whitening filter

TheGEVD-based signal separation/enhancement was proposed
by [3, 4]. According to [3], the optimal filter for signal en-
hancement is given by

y(t) = Wx(t)

W = E−T GET (10)

ET , the first term, projects the observation x(t) into the eigen-
space spanned by the eigenvectors E. Also, ET reduces the
interference by the whitening effect (5). G = diag[g1, · · · , gM],
the second term, imposes gain on each subspace. In [3], the
Wiener filter-based gain was employed. The alternative gain
which extracts the signal subspace [4] is defined as

g = [g1, · · · , gM ] = [

LS︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0] (11)

E−T , the third term, projects the signal processed in the eigen-
space back into the observation space. The output y(t) be-
comes the estimate of the observation contributed mainly by
the signal sources qS(ri, t), i.e., y(t) � xS(t).

GEVD

Pre-whitening

Localization

Signal
Extraction

x(t) y(t) z(t)

��E

P( )r

Sensor
Array

Fig. 1. Block diagram of the proposed GEVD-based localiza-
tion and signal extraction system.

3.4. Extraction of source signal

Once the pre-whitened observation y(t) is obtained, various
types of signal separation/extraction techniques such as ABF,
PCA and ICA can be applied to y(t) to extract or enhance a
certain component from a mixture of LS signals.
As an example of the supervised signal separation tech-

niques, the minimum variance (MV) ABF is given by

zMV (r, t) = hT y(t) (12)

h =
C−1a(r)

aT (r)C−1a(r)
(13)

whereC is the covariance of y(t) as

C = E
[
y(t)yT (t)

]
, for t ∈ Ψ (14)

The advantage of the supervised method is that the activity at
a certain point r of the brain can be extracted. The drawback
is that a precise model of the electro-magnetic field a(r) must
be provided.
As an example of unsupervised signal separation tech-

niques, the filter for extracting the nth principal component
using PCA is given by

zPCA(n, t) = dT
ny(t) (15)

where dn is the nth eigenvector of C. The advantage of the
unsupervised method is that no prior knowledge of the brain
is required. The drawback is that the estimation of the source
location of the extracted signal is difficult.

3.5. Entire system

Figure 1 shows the entire signal processing system. First,
GEVD is applied to the MEG observation x(t) to obtain the
eigenvalues and eigenvectors. Using these, pre-whitening fil-
ter is constructed and the observation is processed with this
filter. The signal of interest z(t) is then extracted from the
pre-whitened observation y(t). When using a supervised ex-
traction method such as ABF, the location of the source of
interest can be estimated using GEVD-based localization.
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Fig. 2. Location of the MEG sensors and the scanning surface
for localization. The dark region on the surface is “ROI” in
fMRI measurements.
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Fig. 3. Eigenvalue distribution of R. The eigenvalues with
higher orders (m > 100) are omitted.

4. EXPERIMENTS

4.1. Conditions

The observation was obtained using 208-channel MEG sen-
sors. Brain activities during the movements of a hand of a
subject (the game of ’paper, stone and scissors’) were mea-
sured. Figure 2 shows the locations of sensors and the scan-
ning surface for localization (hemisphere with a diameter of
105 mm). In this figure, the region of interest (ROI), which
is the active brain region for fMRI measurements when the
same movement of hand is conducted, is also depicted.

4.2. Results

Figure 3 shows the eigenvalue distribution of R. By com-
paring the eigenvalues of GEVD and SEVD, it can be seen
that the eigenvalues with lower orders (up to around 10) were
reduced for the case of GEVD. Since the eigenvalue distri-
bution reflects the spatial power distribution of sources, this
can be interpreted to mean that the powers of the interferences
qI(ri, t) are larger than that of the target signals qS(ri, t) and
that the lower order eigenvalues of SEVD mainly contain the

(a) SEVD-MUSIC Spectrum
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(b) GEVD-MUSIC Spectrum
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Fig. 4. Spatial spectrum obtained using the MUSIC method.

power of interferences. This power of interferences was re-
duced by the whitening effect of GEVD.
Figure 4 shows the spatial spectrum obtained by using the

MUSIC method. For the sake of comparison, eigenvectors of
SEVD and GEVD were used to calculate (9). When SEVD
was employed, three regions on the surface were highlighted.
For the case of GEVD, on the other hand, two of them van-
ished and a single region remained. This is also due to the
whitening effect.
Figure 5 shows one of the sensor observation, xm(t), and

the GEVD filter output, ym(t). The sensor m = 160, which
is empirically known to show a high correlation with hand
movement, was chosen. Figure 5(a) shows the sensor obser-
vation xm(t) for a single trial, while (b) shows the observation
averaged over 30 trials xm(t). The onset of the target signal is
shown by the vertical dotted line in (a). From this, movement-
related brain activity can be seen in the averaged observation.
In (c), which shows the GEVD filter output ym(t), it can be
seen that the signals in the period [1,1500] (t �∈ Ψ) were re-
duced by the whitening effect. However, the signal for t ∈ Ψ
([1501,2000]) is still somewhat noisy compared with that of
(b). By averaging ym(t) over multiple trials, the movement-
related activity was considered to be extracted more clearly,
as shown in (d).
Figure 6 shows the final output of the system z(t). Fig-
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Fig. 5. Observed and estimated sensor signals. (a) Observed
sensor signal xm(t); (b) averaged sensor signal xm(t); (c) the
output of the GEVD filter ym(t); (d) the averaged output of
the GEVD filter ym(t).

ure 6(a) shows the case for MV-ABF while (b) shows the case
for PCA. For MV-ABF, the focal point r is chosen so that the
spatial spectrum P (r) is the largest. In this particular exam-
ple, both MV-ABF and PCA yielded waveforms similar to
that of the averaged GEVD output ym(t) shown in Fig.5(d).

5. DISCUSSION AND CONCLUSION

In this paper, a method of pre-whitening of MEG observa-
tion using GEVD is proposed. From (10) and (8), it is ob-
vious that the pre-whitening filter “ΠS” proposed in [1] is
a special form of the GEVD approach with the gain g =
[λ1, · · · , λL, 0, · · · , 0]. In this sense, the proposed method is
a generalization of pre-whitening in which an arbitrary gain
function g can be used. GEVD-based localization and extrac-
tion of the brain activity was applied to the MEG observa-
tion and it was shown that the movement-related brain activ-
ity could be extracted from single trial data. The next step of
this study is to apply the proposed approach to the automatic
classification of brain activities.
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Fig. 6. The extracted brain signal z(t). (a) the output of the
MV beamformer zMV (r, t); (b) that of PCA zPCA(1, t). The
value “Cor” indicates the correlation coefficient with ym(t)
(Fig.5(d)).
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[6] A. Dogandz̆ić and A. Nehorai, “Estimating evoked dipole re-
sponsesin unkown spatially correlated noise with EEG/MEG ar-
rays,” IEEE Trans. Signal Processing, vol. 48, no. 1, pp. 13–25,
2000.

[7] G. Strang, Linear Algebra and Its Application, Harcourt Brace
Jovanovich Inc., Orlando, 1988.

[8] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propagation, vol. AP-34,
no. 3, pp. 276–280, March 1986.

568


