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ABSTRACT

This paper presents an open contour tracking method that employs
an arc-emission Hidden Markov Model (HMM). The algorithm en-
codes the shape information of the structure in a spatially deformable
trellis model that is iteratively modified to account for observations
in subsequent frames. As the open contour is determined on the
trellis of an HMM, a dynamic programming procedure reduces the
computational complexity to linear in the length of the structure (or
contour). The method was developed for tracking general curvilin-
ear structures, and tested on subcellular image sequences, where mi-
crotubules grow, shrink and undergo lateral motion from frame to
frame. Microtubule length changes are modeled by the addition of
appropriate transient and absorbing states to the HMM. Our results
provide experimental evidence for the proposed algorithm’s capabil-
ity to track non-rigid curvilinear objects in challenging environments
in terms of noise and clutter.

Index Terms— Biomedical image processing

1. INTRODUCTION

Automated data collection and quantification are becoming critical
in biological research and directly impact a multitude of fronts, e.g.,
the exploration of the biochemical mechanics of devastating diseases
and the general understanding of cellular machinery. However, bi-
ological content presents specific challenges. For example, fluores-
cence imaging, a mainstream imaging technique in live cell studies,
introduces focal issues and photobleaching in addition to the typical
contrast and noise problems. The experimenter has no control over
the spatial distribution of objects, since the conditions must reflect
natural processes as closely as possible. Furthermore, images con-
sist of 2D projections of 3D biological structures, resulting in a mesh
of objects where clutter becomes a common problem. Thus, analysis
must be performed on images that are generally of poor quality.

A general problem is that of tracking the morphological changes
in biological structures over time. A particular set of such structures,
which appear as string-like formations in images, presents signifi-
cant challenges in the presence of clutter. Such structures include
blood vessels, actin filaments, microtubules, dendrites, etc. Accu-
rate tracking, that is robust to clutter, is desirable for collecting mea-
surements in such videos. In this work, we consider the problem of
tracking curvilinear structures that exhibit length changes (growth
and shortening) and morphological deformations. We formulate the
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problem as the tracking of an open contour without fixed or anchor
points along the contour body.

Microtubules are filamentous structures that perform a number
of important cellular functions by varying their lengths over time
(Figure 1). Perturbations of the natural balance of this process are
implicated in various diseases, including Alzheimer’s and cancer.
Microtubules are therefore the focus of intensive research efforts.
Studies of microtubule dynamic instability seek to better understand
patterns of growth and shortening behavior in response to various
cellular conditions induced by disease or drugs. The analysis of mi-
crotubule dynamics is highly nontrivial and manifests all the chal-
lenges mentioned above. The potential impact of automated analysis
has attracted much attention. For recent results see, e.g., [1, 2, 3, 4,
5, 6]. Herein we present a novel general approach and its application
to the problem of tracking live cell microtubules.

(a) Frame 1 (b) Frame 10 (c) Frame 12

Fig. 1. Microtubule image sequence.

2. METHOD

In this section we present an algorithm for tracking curvilinear struc-
tures in live cell images. The algorithm uses the estimated contour
position in the previous frame as prior information, and employs
an arc-emission HMM representation to properly account for ob-
servations in the current frame and to refine the contour for possible
growth, shortening and lateral motion. Initialization of the tracking
procedure in the first frame can be performed semi-automatically us-
ing the tracing method of [7].

2.1. Arc-Emission HMM with Transient and Absorbing States

The open contour at frame t, Ct, is represented in a sampled format
by a set of M equally spaced (spacing d‖) points indexed by φ ∈
{1, 2, . . . , M}. In order to capture possible deformations in the next
frame, we construct a deformable trellis whose central axis is Ct.
The trellis is constructed by defining a set of N spatial nodes that
are equally spaced (spacing d⊥) along the normal n⊥(φ) to Ct at
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each sampled location φ, denoted Xφ = {xφ(ψ)|ψ = 1, . . . , N}.
The trellis node construction about the current contour is depicted in
Fig.2, as well as its possible deformation in the next frame.

Xφ Xφ+1

Xφ+2

Xφ+3

Xφ+4 Xφ+5d⊥
d‖

C t
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Fig. 2. Trellis node positioning about Ct covers possible deforma-
tions in Ct+1. Edges between trellis nodes are not shown to avoid
clutter.

Given the image at frame t + 1 and the trellis constructed using
Ct, we want to find the optimal path in the trellis, i.e., the set of
points {x̂ ∈ Xφ|φ = 1, . . . , M} that will best represent Ct+1. The
number of possible solutions is NM and grows exponentially with
M . To evaluate the quality of each possible solution we must jointly
account for prior information from Ct and observation or evidence
in the new frame. We propose to use the HMM, λ = (A,B, π) as
probabilistic model, and apply Viterbi decoding to find the optimal
solution at computational complexity that is linear inM . Each state
sψ in λ is associated with a point xφ(ψ) inXφ.

To model length variations, and in particular shortening events,
we use two auxiliary states, s0 and sN+1. s0 is a transient state that
models shortening at the initial end of the contour, and may be inter-
preted as the “contour has not yet begun” state. It is only possible to
remain in this state or transition out of it, but impossible to return to
it. sN+1 is an absorbing state that models shortening at the other end
of the contour. It is interpreted as the “contour has ended already”
state. Once the system transitions to this state it will never transition
out. Thus, shortening at the initial end corresponds to late transition
out of state s0, and shortening at the other end corresponds to early
transition into sN+1. We re-emphasize that s0 and sN+1 are tran-
sient and absorbing states, respectively, i.e., the only allowed transi-
tion into s0 is its self transition, and the only allowed transition from
sN+1 is its self transition. Fig.3 shows the state diagram and trellis
of a simple N = 3 system.

The HMM state transition probabilities govern the flexibility of
the contour to deform, and reflect statistically extracted information
about deformability prior to making any observation in frame t + 1.
The HMM emission probabilities are assigned to each state transi-
tion reflects the probability of making the observation recorded in
frame t + 1 if Ct+1 passed through that specific state pair. Note
that this scheme is effectively an arc-emission HMMwhere emission
probabilities are conditioned on the state pair (transition) instead of
only on the current state as is the case for “plain” HMM. This is
a major departure from earlier approaches [8], which has a major
practical impact as will be further explained below. We propose to
incorporate with the image features observed between consecutive
Xφ’s using arc-emissions and adjust the transition matrix consider-
ing the flexibility of the Ct.

Arc-emission probabilities associated with the state transition
from point z1 = [x1, y1]

T to point z2 = [x2, y2]
T are determined

by evaluating the evidence in the image for a contour consistent with
this transition, i.e., the support S(z1, z2) in the patch between the
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Fig. 3. (a) State transition diagram forN = 3, and (b) corresponding
HMM trellis. s0 and s4 are the starting and ending states, respec-
tively.

points, which is measured by the average second order directional
derivative in the direction perpendicular to the transition.

S(z1, z2) =

Z
1

0

f((1 − τ )x1 + τx2, (1 − τ )y1 + τy2, α)dτ (1)

where, f(x, y, α) = v
T
H(x, y)v, v = [cos α sin α]T , α =

arctan( y2−y1

x2−x1
)+ π

2
andH(x, y) represents the Hessian matrix eval-

uated at point [x, y]T .
With S(xφ(i),xφ−1(j)) as the feature of choice, we create a

gaussian model for arc-emissions in the foreground, p(x|C), and
background, p(x|C̄). The arc-emission probabilities for going from
states si to sj , i, j ∈ {1, . . . , N}, are extracted simply by evaluating
the foreground arc-emission model p(x|C) at S(xφ(i),xφ−1(j)).
However, the arc-emission probabilities for self transitions of s0 and
sN+1 should reflect the evidence for background emissions for any
pair of xφ(i),xφ−1(j), i, j ∈ {1, . . . , N}. Accordingly, the arc-
emission probabilities, p(Oφ|sφ = i, sφ−1 = j), can be formulated
as follows:

p(Oφ|sφ = i, sφ−1 = j) =8<
:

p(S(xφ(i),xφ−1(j))|C) i, j ∈ {1, . . . , N}

min
m,k∈{1,...,N}

p(S(xφ(m),xφ−1(k))|C̄) i = j ∈ {0, N + 1}

(2)
Figure 4 illustrates a critical advantage of arc-emission HMM

over the traditional state-emission HMM. In practice, and certainly
in the case of microtubules, one should expect a clutter of similar
objects in the vicinity. This means that although we assume some
noise model for the background, we may encounter background that
exhibits similar behavior to the foreground. Consider two nearby
microtubules as represented in Figure 4. States that are located on
either tubule will show significant evidence for a possible passage
of the contour. If the emission probabilities are only conditioned on
the state, there isn’t sufficient penalty for jumping from one tubule
to the other, which the traditional HMMwill do depending on which
tubule’s local evidence is somewhat more pronounced at each point.
(The only penalty for such skipping is provided by the state transi-
tion probabilities, but “tightening” those to solve this problem will
severely compromise the flexibility of the trellis and its ability to
model deformations). Arc-emission HMMs, on the other hand, al-
low evaluation of the local evidence for consistency with the direc-

562



(a)

(b)

Fig. 4. (a) Synthetic image (b) Viterbi paths associated with arc-
emission (green) and state emission (red) HMM.

tion of the transition and can easily eliminate such confusion. This
is demonstrated in the figure by the green solution.

2.2. Extension of the Deformable Trellis

After running the Viterbi decoding and removing the Xφ’s associ-
ated with states s0 and sN+1 from the deformable trellis, we pro-
pose an algorithm to extend the deformable trellis from both ends to
capture growth of the microtubule. In order to extend the deformable
trellis, we make use of a graph structure at both ends of trellis which
is illustrated on Figure 5. Here, we search for the best path start-
ing from nodes xφ(ψ) for φ = 1, M and ψ ∈ [1, N ]. We also set
the support of edges to be log(p(S(vi,j , vi+1,k)|C)) and use the log
likelihood of the trellis points, lψ , as the prior to satisfy stochastic
constraints. In this scheme one can also use different probabilistic
weights for each edge connected to the same parent node.

Suppose each vertex of the graph is represented with vi,j where
i and j are the indices associated with the position of vertex in n⊥

and n‖ direction. We apply Floyd-Warshall algorithm to find the
solution to following equation:

r
∗ = argmax

r

lr1
+

dX
i=1

log(p(E(vi,ri
, vi+1,ri+1

)|C)). (3)

After calculating the best paths starting from all tube states at each
end, we select the best path that has the minimum cost. The direction
obtained by considering the root and its child node that are in the best
path is considered as n‖ to extend the trellis at the end.

We stop adding more points to the deformable trellis ifS(v1,r∗
1
, v2,r∗

2
) <

τs. The parameter τs can be set adaptively considering the statistics
of S(xφ(N+1

2
),xφ+1(

N+1

2
)).

Once we are done with the adding more points to the deformable
trellis, the maximally likely state sequence is obtained by applying
Viterbi decoding to the λwith observation probabilities p(Oφ|sφ, sφ−1).

Fig. 5. Construction of the funnel for extension of the deformable
trellis.

r
∗ = argmax

r

πr1

MY
φ=2

p(Oφ|sφ = rφ, sφ−1 = rφ−1)arφ−1,rφ

(4)
The positions of the states with indices, r∗, will be the best rep-

resentation of Ct+1. As a predictor of the center of the deformable
trellis in the next frame one can use the smoothed version of the
current best path.

3. EXPERIMENTAL RESULTS

In our experiments we consider tracking of microtubules on live cell
florescence image sequences [9] where each image sequence con-
sists of approximately 40 frames. Four experts manually tracked
microtubules by approximating their bodies with polylines in each
frame. A total of 33 microtubules were collected from 8 videos,
associating each tubule with 4 distinct tracks.

Assume that the mean tip position is represented with uμ =
E{uei

} where uei
is the tip position of the i’th expert’s polyline.

Further, let u be the tip position of the tracking output. The experi-
ments are conducted using both arc- and state-emission HMMs. The
error measure based on the tip positions, E{||tμ − t||22|c2}

0.5, as
well as the uncertainty among the experts, E{||tμ − tei

||22}
0.5, are

presented in Table 1. In addition, the output of the proposed algo-
rithm together with the ground truth from a single expert for a single
image sequence is illustrated in Figure 6 and Figure 7. The tracking
output on all image sequences and the ground truth are available at
[10].

The distances presented in this section are in terms of pixels.
During the calculation of error in tip distance, we consider the con-
dition c1 ≡ ||tμ − t||2 < τt = 6 on tracking success which is set
by biologists. The rate of success in terms of the c1 i.e., the num-
ber of tracks satisfy c1 divided by the total number of tracks, is also
presented in Table 1 with pc1 .

Arc-Emission State Emission

pc1 0.89 0.86

E{||tμ − t||22|c2}
0.5 4.13 4.43

E{||tμ − tei
||22}

0.5 1.39

Table 1. Performance of proposed tracking algorithm and the uncer-
tainty measure among the experts.
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The majority of tracking failures were due to Ct+1 jumping to
and tracking a nearby tubule in the rest of the frames. While we in-
clude these tracking failures in the rate of success, we exclude them
from the tip distance statistics. Therefore, we present conditional
tip distance statistics based on the condition c2 ≡ ||tμ − t||2 < 5τt

where 5τt = 30 is selected to eliminate the outliers described earlier.

(a) Frame 5 (b) Frame 15

(c) Frame 36 (d) Frame 41

Fig. 6. Output of the proposed algorithm (green) and the ground
truth (red).

4. CONCLUSION

In this paper we propose an arc-emission HMM based open contour
tracking algorithm. In addition to the tubule states that capture the
lateral deformations, we consider auxiliary transient and absorbing
states that capture the shortening of the contour. In the case of con-
tour growth, we consider a graph structure where the edge weights
are selected consistently with the arc-emissions of the HMM. Exper-
iments reported that arc-emissions performs better than state emis-
sions since it incorporates with the image features between consec-
utiveXφ’s.
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