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ABSTRACT
 
Genetic diseases are characterized by the presence of genetic 
variations. These variations can be described in the form of copy 
number. Microrray-based Comparative Genomic Hybridization is 
a high-resolution technique used to measure copy number varia-
tions. However, the observed copy numbers are corrupted by 
noise, making variations breakpoints hard to detect. In this paper, 
we provide a framework for the analysis of copy number. The first 
part of the framework uses an extended version of nonlinear diffu-
sion filter as pre-processing technique to denoise the observed data 
base. The extension accounts for the nonuniform physical distance 
between probes. The second part uses estimates the relative fre-
quency of local and global genomic variations across multiple 
samples to identify statistically and biologically significant varia-
tions. For evaluation, we provide copy number variations results 
using simulated and real data samples. We also validate the pre-
dicted copy number variation segments of copy number gain and 
copy number loss using the experimental molecular tests quanti-
tative polymerase chain reaction and show that our proposed ap-
proach is superior to popular commercial software. 
 

Index Terms— Copy number variations, Comparative Ge-
nomic Hybridization, Smoothing, Edge-preserving, multiple sam-
ples. 
 

1. INTRODUCTION 
 
Copy number variations (CNVs) such as deletions and duplications 
are associated with the development and progression of many ge-
nomic diseases such as autism spectrum disorders (ASD). Under-
standing which genes or genomic locations are involved in the 
disease development, progression and maintenance in addition to 
the characterization of genomic disorders in developmental ab-
normalities, will lead to a better understanding of these complex 
human diseases as well as identify targets for therapeutic involve-
ment. Oligonucleotide array CGH platform (NimbleGen technol-
ogy) is an experimental approach for genome-wide scanning of 
differences in DNA copy numbers (DCN). It provides the capacity 
to detect copy number differences within LCRs. Unfortunately, 
these experiments contain many sources of errors due to human 
factors, array printer performance, labeling, and hybridization 
efficiency [4]. Due to these errors the observed copy numbers cor-
rupted by noise, making the breakpoints of variation regions hard 

to detect. Therefore, one should consider denoising the data as a 
pre-processing step to uncover the true DCN changes before draw-
ing inferences on the patterns of variations in the data samples. 
Various approaches had been proposed to uncover the true genetic 
variations.  We review some of these techniques in the next sec-
tion. 

In this study, we provide a framework for the analysis of copy 
number datasets. It consists of two parts: (1) a preprocessing algo-
rithm, and (2) a statistical search model based on the relative fre-
quencies of the variations.  The preprocessing algorithm is based 
on a semi-implicit nonlinear diffusion filter [13,14].  We extend 
the algorithm to consider the effect of nonuniform physical dis-
tance between the probes in the copy number datasets. The statisti-
cal analysis method locates and classifies the common variations 
within the affected samples that share the same variation type with 
respect to the normal variations in the control samples. This is 
done to further characterize the rearrangements in previously re-
ported samples and suggest an additional set of genes that may be 
involved in the disease.  

The rest of this paper is structured as follows: Prior work is 
presented in section 2. In section 3, we introduce extended version 
of nonlinear diffusion filter. Section 4 is devoted for statistical 
models searching for common variations across multiple samples. 
In section 5, we examine a few CNVs predicted by the proposed 
algorithms and compared their ability to reliably report CNVs 
validated using the experimental molecular method quantita-
tive polymerase chain reaction (QPCR). Finally, Conclusions 
based on the observed results are provided in section 6. 

 
2. PRIOR WORK 

 
Generally, Copy Number variations (CNVs) detection techniques 
fall into two categories: statistical model based approaches and 
smoothing techniques. In the statistical model based algorithms, 
the noise free signal and noise models are required. Unfortunately, 
these models are usually unknown or impossible to describe ade-
quately with simple random processes. In addition, the techniques 
are computationally costly. Examples of recent and efficient statis-
tical approaches are the lookAhead algorithm [1], the Hidden Mar-
kov Models (HMMs) [2], and the CGH segmentation [5]. On the 
other hand, the smoothing techniques provide an alternative me-
thod for processing the DCN data that are characterized by small 
and long intervals with of sharp transitions and singularities at 
edges. The techniques are particularly suitable for denoising DCN 
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data as they do not require a parametric model in finding structures 
in the data. The main advantage of these techniques is their com-
putational efficiency. Examples of efficient smoothing techniques 
are the one-dimensional Discrete Wavelet-based methods [3] and 
the Wavelet footprints [8]. Here, we present the extended version 
of nonlinear diffusion filter (NLDF) in the next section as local 
selective smoothing technique to denoise the DCN data. Also, we 
provide comparison study with our previously proposed algorithm 
based on Sigma filter [6,10,11]. 
 

3. METHODS AND MATERIALS 
 
Nonlinear diffusion filter is an efficient and unconditionally stable 
algorithm. It had been presented in [13,14] based on semi-implicit 
scheme for discretizing diffusion equation. The filter operation is 
practically performed by numerically solving the continuous nonli-
near partial differential equation (PDE). 
 
3.1. One-dimensional Nonlinear Diffusion Filter 

A good model for describing DNA copy number data is: 
 [ ] = [ ] +        =1, 2, ... ,          (1)iy i f i . i N  

where y[i] and f[i] are the observed and true intensities of the DCN 
data probe at ith location along the x-axis respectively. The i rep-
resent independent identically distributed (i.i.d.) random variable 
from the Gaussian distribution of zero mean and 2 variance. The 
main idea of the original NLDF algorithm proposed by [13] is to 
determine a set of smoothed versions u(x, t) of the observed noisy 
signal y as an approximation of the true signal. Let 

tu= div[g(|| u||) u]                               (2) 
 

where div is the divergence operator,  is the gradient operator, 
|| u|| is the gradient magnitude, and g(|| u||) is an edge-stopping 
function (diffusivity). Here we use Weickert edge-stopping func-
tion presented in [13] 
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where  is a positive constant that play role of a contrast parame-
ter. The main purpose of the edge-stopping function g(s) is to con-
trol the diffusion process. To ensure the sharpness of the break-
points in the smoothed version of the original signal, it should be a 
non-negative decreasing function. It is chosen to satisfy g(s)  0 
as s   so that the diffusion is stopped across edges. 

As in [13,14], we linearly approximated the gradient as inten-
sity differences,

j iu u -u , between the processing intensity i 

and its neighboring intensity ( )j W i , where W(i) denotes the 
spatial set of the neighbors of intensity i. We discretized the diffu-
sion equation using semi-implicit scheme as follows: 
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Here, k  denotes the discrete time steps (iterations) and gi,j is the 
diffusivity belong to the connection between intensities i and j. 
The constant  is a positive scalar that determines the diffusion rate 
and x is the grid size. The matrix form of the semi-implicit 
scheme can be written as: 
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Note that A is a tridiagonal invertible matrix with i,j 0 for i=j and 
I is the identity matrix. For further details and proofs see [13,14]. 

The one-dimensional semi-implicit scheme of Nonlinear Diffusion 
filter procedure is as follows: 
 
1- Start with the noisy signal y as initial condition: u0 = y. 
2- Calculate A and B from (5). 
3- Apply the Thomas (Gaussian elimination) algorithm to solve a 

set of linear equations in the form of tridiagonal system matrix 
in the form of Bu=d. It can be summarized as follows: 

 
a) Decompose B into the product of a lower bidiagonal matrix 

L and an upper bidiagonal matrix, respectively. 
b) Solve Lv=d for y by forward substitution. 
c) Solve Ru=v by backward substitution. 

 
The scheme is computationally efficient. It requires (5N-4) multi-
plications/divisions, and (3N-3) addition/subtractions. Hence the 
algorithm is linear in N. It is stable for every strictly diagonally 
dominant system matrix. 

3.2. Extended Nonlinear Diffusion Filter 
 
Most prior works considered the DNA copy number profiles as 
discrete signals under the assumption that the probes are uniformly 
distributed along the chromosomes. This assumption may lead to 
wrong decisions with false positive or/and false negative points.  

In this section, we consider the nonuniform physical distance 
between the probes and demonstrate the performance of the ex-
tended algorithm using simulated and real data examples.
Hence, we remodeled the DCN data model discussed in the previ-
ous section as nonuniformly distributed discrete signals as follows:
        [ ]  [ ]        =1,2, ... ,           (7)i i iy x f x . i N  
where xi in this case is the nonuniform distributed probe at ith loca-
tion along the x-axis. The xi’s are not uniformly distributed and the 
distance between two adjacent probes xi and xi+1 may vary ran-
domly. The y[xi] and f[xi] are the observed and true intensities of 
the DCN data probe location xi respectively. The i represent i.i.d. 
random variable from the Gaussian distribution of zero mean and 

2 variance. The suggested procedure to solve the spacing distance 
effect can be summarized as follows: 

1. Insert artificial markers between the original probes based 
on the average distance of the adjacent probes. 
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1
1 ,                                         (8)

1

N

i i
i

avg

x x
d

N
 

554



2. Apply the nearest neighbor interpolation to create the artifi-
cial probes. 
3. Apply the original nonlinear diffusion filter steps. 

 
3.3. Performance 
 
As shown in Figure 1, the receiver operating characteristic (ROC) 
curves for MDA-MB-453 data sample of Coriel cell lines demon-
strate that our previously proposed Sigma filter based algorithm 
[11] provides superior performance to denoise the DCN data com-
pared to other efficient proposed techniques such as LookAhead 
algorithm [1], wavelet-based [3], CGH segmentation [5] and HMM 
[2].  It also has lower computational complexity of O(N) compared 
to the statistical approaches, LookAhead algorithm O(N1.5), and 
CGH segmentation O(N2) .  We therefore use it in our comparison 
study with the semi-implicit nonlinear diffusion filter (NLDF). 
Table 1 presents a comparison study between the Sigma filter and 
NLDF based on the average of the root mean square error 
(RMSEs) values of 300 simulated data sets generated randomly 
according to real data distributions at different noise levels.  See 
[7] for details. The results of the average RMSE values in Table 1 
show that on average the NLDF outperforms the Sigma filter. In 
addition, the NLDF that considers the nonuniform spacing effect 
between probes achieved better performance than the NLDF that 
does not consider that effect. Figure 2 shows that the Nonlinear 
Diffusion Filter (NLDF) has better performance compared to 
Sigma filter for different noise levels in simulated data. The NLDF 
ROC curve rides on the top of Sigma filter curve. The superior 
performance of the NLDF is due to the selective smoothing ability 
of the edge-stopping function. 

 
Figure 1. Receiver operating characteristic (ROC) curves for MDA-MB-453 data 
sample of Coriel cell line of Sigma filter, Wavelet, LookAhead, CGH segmentation, 
HMM, and Extended Sigma filter (Sigma2)  algorithms. 
 

 Sigma filter Ext-Sigma filter NLDF Ext-NLDF 
0.1 0.0408  0.0312 0.0248 0.0201 
0.3 0.0641 0.0507 0.0445 0.0384 
0.5 0.1090 0.0853 0.0893 0.0721 

Table 1. The average of root mean square errors (RMSE’s) values of 300 simulated 
data samples with 3 different noise levels using Sigma filter and NLDF.  
 

4. STATISTICAL ANALYSIS MODELS 
 
After filtering the DCN samples, we need to apply a statistical 
analysis to characterize the randomness of the copy variations and 
classify the genes involved in the targeted diseases.  Here, we dis-
cuss an approach to resolve the challenge encountered in [9] while 
mapping the true breakpoints across multiple samples and espe-

cially in the complex LCRs regions. We use two statistical scores, 
the Global score and the Interval score to measure the significance  
Figure 2. Receiver operating characteristic (ROC) curves for Sigma filter and nonlin-
ear diffusion filter using simulated data with different noise level. a) 10%, b) 20%, c) 
30%, and d) 50% of the original signal. 
 
of common variations across the sample at each probe location and 
interval probes locations, respectively. 
 
4.1. Global score 
 
The global score (G-score) is the number of variations of the same 
type (gains or losses) that have occurred at each genomic location 
according to the thresholds provided by [9]. Suppose that a set of 
M filtered DCN samples each with N probes is represented in a 
matrix form . Given a column vector of the filtered DCN data of 
the same type n={ s,n} at position n, we have 

[ ] .      1 2   ,        (9)
s ,n

s M

v
G n n , , ... N

M
 

Here, s represents the samples of the variation of the same type 
and vs,n  is a binary number equal to 1 if the variation is present 
and 0 otherwise. The score G[n] will indicate whether the genomic 
location n contains a significant variation of the same type within 
the samples M.  A higher the G-score indicates a higher confidence 
associated to a decision made at a given location. For simplicity, 
we consider only 2 types of variations as it illustrated in Figure 3. 
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Figure 3. A) Illustration of the statistical analysis across multiple samples for a given 
variation interval. B) Display of the statistical method resultant sample (R) for the 
corresponding variant interval of the given samples.  
 
4.2. Interval score (Class discovery) 

The statistical score searching for common genomic intervals 
across the filtered samples is similar to searching globally for 
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common variations as described above. However, instead of meas-
uring the number of variant probes s at each genomic location, 
here we measure the number of common variant intervals C across 
the samples that share the same type of variations (class). Particu-
larly, we are looking for I and C that maximize the Global-score, 
where I is a continuous interval of genomic locations that share the 
same type of variations.  Specifically, 
 

[ ] .                          (10)
m ,n

m C n I

v
G C , I

M
 

Our initial set of 29 filtered data samples from 14 controls and 15 
children with autism indicates that some CNVs have a signifi-
cantly higher frequency than others. Even with such a small sam-
ple size we are already observing statistically significant CNVs 
associated with autism. For example, CNV2 on chromosome 15 (a 
deletion) was represented in 8/15 children with autism as com-
pared to only 1/14 controls. 
 
4.3. Statistical Significance 
 
To date, some attention was given to search for significance of 
CNVs (deletions or duplications) that overlap across multiple case 
samples with respect to control samples as null model [1,11]. In 
this paper, we apply the t-statistic test and assign p-value to each 
genomic location by using a multiple testing corrected permutation 
approach. Probes with p<0.05 were termed significant.  Results of 
the comparison study based on the calculation of p-value are not 
shown due to space limitation. 
 
5. VALIDATION USING QUANTITATIVE POLYMERASE 

CHAIN REACTION (QPCR) METHODS 
 
In this section, we examine a few CNVs predicted by both the 
segmentation software provided by NimbleGen and the proposed 
algorithm and compare their ability to reliably report CNVs vali-
dated using the experimental molecular method quantitative poly-
merase chain reaction (QPCR) [12] in the laboratory. As shown in 
Table 2, Quantitative PCR was performed on a set of 6 samples, 3 
normal controls (C1 - C3) and 3 (A1 - A3) children with autism 
using oligonucleotide array CGH along with the reference sample 
for the chromosome 7q and chromosome 10q segments for nucleo-
tide positions (70061077- 70061395) and (77927368- 77927714), 
respectively.  
 

Tested  
Region 

Sample 
ID 

Segment  
Analysis 

Sigma 
Filter 

NLDF QPCR 

A1 no change no change no change no change 
A2 gain gain gain gain 
A3 gain gain gain gain 
C1 no change no change no change no change 
C2 no change gain gain gain C

hr
om

os
om

e 
7 

70
06

10
77

-
70

06
13

95
 

C3 no change no change no change no change 
A1 loss loss loss loss 
A2 loss loss loss loss 
A3 loss loss loss loss 
C1 loss loss loss loss 
C2 no change gain gain gain 

C
hr

om
os

om
e1

0 
77

92
73

68
-

77
92

77
14

 

C3 no change loss loss loss 
Table 2. Comparison study of segmentation analysis, Sigma filter, and NLDF algo-
rithms for CNV detection, validated by QPCR. Sample IDs with “A” are autistic 
individuals and with “C” are control individuals, respectively. 
 

Table 2 shows that within the two tested regions that were deter-
mined by QPCR to be either deleted (loss) or duplicated (gain) in 6 
samples, the segmentation analysis correctly predicted only 4 of 
the CNVs. The copy number gain and loss found in samples C2 
and C3 was not predicted by the segmentation but is readily pre-
dicted by examination of the NL diffusion filtered data. 
 

6. CONCLUSIONS 
 
In this paper, we proposed a new algorithm for detecting copy 
number variations.  The algorithm is based on nonlinear diffusion 
filtering. We demonstrated its superior performance using real and 
synthetic data.  This superior performance is due to the discrimina-
tive characteristics governed of the edge-stopping function that the 
nonlinear diffusion filter uses. Even better performance can be 
achieved by considering the effect of the nonuniform physical 
distance between the probes of the DCN samples. To characterize 
the randomness that incentives, we preformed a statistical analysis 
on the filtered samples searching for common variations that occur 
with high frequency to provide insight into the patterns of these 
variations. Finally, the experimental molecular method QPCR 
confirms the superior performance of NLDF. 
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