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ABSTRACT

High-dynamic-range medical images have intensity values which
cannot be visualized on current low-dynamic-range displays. In this
paper, we introduce a fast range compression method which avoids
common artifacts such as loss of contrast, haloes and gradient in-
versions. The proposed method first compresses the intensity range
using a global transfer function. It then extracts and enhances weak
structures using a multiscale decomposition and artifact correction.
We show that artifact correction can be formulated as a linear-pro-
gramming problem, for which we propose an efficient approximate
solution. Experiments on real data demonstrate the effectiveness and
speed of the proposed algorithm.

Index Terms— High-dynamic-range images, range compres-
sion, artifact correction, Laplacian pyramid, linear programming

1. INTRODUCTION

Medical imaging devices are able to generate data whose High-Dy-
namic Range (HDR) far exceeds the display capabilities of current
low-dynamic-range monitors. It is therefore necessary to compress
their range before visualizing them. The challenge here is to design
techniques which reduce the intensity range but preserve the image
structural content, so that as much information as possible be avail-
able for diagnostics.

Range-compression methods fall into two categories [1]: tone-
reproduction curves and tone-reproduction operators. Tone-repro-
duction curves apply the same global transfer function independently
to all pixels. They are usually faster than tone-reproduction opera-
tors. However, they are also less flexible, which limits the quality
of the compressed images. Such methods include simple transfer
functions like logarithm, power, or linear functions. Improved re-
sults are obtained by defining the transfer function based on inten-
sity histograms [2] or by relying on more complex transfer func-
tions [3]. Tone-reproduction operators take into account the pixels
along with their local neighborhoods. Such methods include direct
intensity processing [4], two-band decompositions [5], multi-band
decompositions [6], and gradient-domain processing [7].

Range-compression methods suffer from severe artifacts, such
as loss of contrast [7], haloes around edges [6], or gradient reversals
in slowly varying regions [8]. All of these artifacts make diagnos-
tics more difficult: reduced contrasts remove weak but meaningful
structures, while haloes and gradient reversals actually add distract-
ing structures to the images. Moreover, the most successful methods
tend to be computationally demanding [7], which hinders their im-
plementation in medical devices.
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In this paper, we present a novel algorithm which aims at com-
pressing HDR images while preserving their structural content. The
algorithm first compresses the intensity range using a global trans-
fer function. Since it reduces the image contrast, an enhancement
procedure follows which amplifies the weak structures to keep them
visible. Here, we rely on a Laplacian pyramid [9] to extract and en-
hance these structures. We present a novel theoretical analysis of the
enhancement artifacts, which leads to a linear-programming prob-
lem [10]. Since the size of the images makes linear-programming
solvers too complex to be practical, we propose an efficient method
which provides an approximate solution. The proposed algorithm
is able to quickly process the large images found in typical medical
scenarii, which makes it suitable for medical devices. Experiments
on real data show the effectiveness and speed of this algorithm.

The remainder of the paper proceeds as follows. First, Section 2
provides a theoretical analysis of the enhancement problem and its
artifacts. It leads to a linear-programming formulation, for which
Section 3 presents an approximate but efficient solution. Finally,
Section 4 describes our experimental results.

2. THEORETICAL ANALYSIS

We now turn to the theoretical study of HDR compression and its
artifacts. The goal of HDR compression is to transform an input
image s into an output image ŝ with a reduced intensity range but a
similar structural content.

In the following, the grayscale input image is assumed to be a
2D signal made of non-negative integer values sij , sampled at the
integer locations (i, j) on a rectangular lattice. For readability, we
shall omit the subscripts when obvious. The output signal ŝ is de-
fined in a similar fashion.

An intermediate compressed signal s̃ is first generated by ap-
plying a global transfer function to the image, that is s̃ = f(s).
The compressed signal is then decomposed into a Gaussian pyramid.
Let us denote by ↑2 and ↓2 respectively the upsampling and down-
sampling operators, along with their associated low-pass filters. The
bands of the Gaussian pyramid are related by s̃(l+1) = ↓2(s̃(l)),
where 0 ≤ l < L is the pyramid level. At the finest level s̃(0) = s̃.

These bands are upsampled to compute the high-pass bands of
a Laplacian pyramid. Denoting c̃(l) the coarse signals obtained by
upsampling, that is c̃(l) = ↑2(s̃(l+1)), the high-pass bands are given
by the analysis equation

d̃(l) = s̃(l) − c̃(l). (1)

Enhancing the weak structures amounts to modulating the high-
pass bands by gain functions g(l)(.), that is

d̂(l) = g(l)
�
d̃(l)

�
d̃(l), (2)
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(a) Original signal (b) Signal enhanced with artifact
correction

(c) Signal enhanced without artifact correction

Fig. 1: The proposed method corrects the artifacts introduced
by weak-structure enhancement, such as gradient inversions, over-
shoots, and overflows.

and correcting artifacts. The gain functions g(l)(.) can be any func-
tions whose values are greater or equal to one.

The enhanced signals then follow from the synthesis equation

ŝ(l) = ĉ(l) + d̂(l) (3)

where ĉ(l) denotes the coarse enhanced signal obtained by upsam-
pling the enhanced signal ŝ(l+1) at the previous levels, that is ĉ(l) =
↑2(ŝ(l+1)). This top-down process is initialized by ŝ(L−1) = s̃(L−1)

at the coarsest level.
The weak-structure enhancement and the artifact correction are

computed jointly by solving a series of independent optimization
problems, one at each level. For clarity, in the following we drop the
exponent (l).

The goal is to obtain an enhancement signal d̂ which is:

• as close as possible to the one given by the gain equation (2),
• does not exceed it,
• has the same signs as d̃,
• does not create artifacts such as overflows, overshoots, and

gradient inversions in the enhanced signal ŝ (see Figure 1).

The first three conditions can be expressed by the optimization
problem

max
d̂

�
i,j

|d̂ij |

such that 0 ≤ χ(d̃ij)d̂ij ≤ g(d̃ij)|d̃ij |, ∀(i, j),

(4)

where χ(.) denotes a sign operator which takes the value 1 when its
input is non-negative, and −1 otherwise.

The last condition is enforced by introducing two additional sets
of constraints in the optimization (4). The first set of constraints
prevents positive and negative overflows. It is expressed as

0 ≤ ŝ ≤ smax, (5)

where smax is the maximum output value, e.g. 255 in the case of an
8-bit display. From (3) it follows that

− ĉ ≤ d̂ ≤ smax − ĉ. (6)

The second set of constraints tests the partial derivatives of the
signal to prevent gradient inversions and overshoots, both positive
and negative. Let us denote the partial derivatives along the axes i
and j by respectively ∂/∂i and ∂/∂j, which are approximated by the
finite difference kernel [−1 1]. For the time being, we only consider
the partial derivatives along the axis i.

Overshoots are reduced by limiting the increase of the partial-
derivative magnitude, ����∂ŝ

∂i

���� ≤ βmax

����∂s̃

∂i

���� (7)

where βmax is a constant factor greater than one.
Gradient inversions are prevented by enforcing that the partial

derivatives of s̃ and ŝ have the same sign. Here, we actually rely
on a stronger version of this constraint, which also prevents the en-
hancement signal from completely flattening our the signal,

χ

�
∂s̃

∂i

�
∂ŝ

∂i
≥ βmin

����∂s̃

∂i

���� (8)

where βmin is a constant factor smaller than one.
Since (8) enforces that s̃ and ŝ have partial derivatives with the

same sign, we have����∂ŝ

∂i

���� = χ

�
∂ŝ

∂i

�
∂ŝ

∂i
= χ

�
∂s̃

∂i

�
∂ŝ

∂i
. (9)

Therefore, (7) and (8) can be merged into a unique set of constraints.
From (3) it follows that

βmin

����∂s̃

∂i

����− ε ≤ χ

�
∂s̃

∂i

��
∂d̂

∂i
+

∂ĉ

∂i

�
≤ βmax

����∂s̃

∂i

����+ ε. (10)

where the small constant ε has been added to cope with noisy signals.
The same constraint holds for the partial derivatives along the j axis.

Putting equations (4), (6) and (10) together, we obtain the fol-
lowing optimization problem,

maxd̂

�
i,j |d̂ij |

such that ∀(i, j),
−ĉij ≤ d̂ij ≤ smax − ĉij ,

0 ≤ χ(d̃ij)d̂ij ≤ g(d̃ij)|d̃ij |,

βmin

���∂s̃ij

∂i

���− ε ≤ χ
�

∂s̃ij

∂i

	�
∂d̂ij

∂i
+

∂ĉij

∂i

	
≤ βmax

���∂s̃ij

∂i

���+ ε,

βmin

���∂s̃ij

∂j

���− ε ≤ χ
�

∂s̃ij

∂j

	�
∂d̂ij

∂j
+

∂ĉij

∂j

	
≤ βmax

���∂s̃ij

∂j

���+ ε.

(11)
As is, this optimization is non-linear and non-derivable due to

the sum of absolute values in the objective function. However, it can
be transformed into a linear-programming problem [10] by splitting
the negative and positive parts of the enhancement signal. Denot-
ing them respectively d̂− and d̂+, the maximization term in (11) is
equivalent to

maxd̂+,d̂−

�
i,j

�
d̂ij+ + d̂ij−

	
such that ∀(i, j),

d̂ij = d̂ij+ − d̂ij−,

0 ≤ d̂ij− ≤ smax, 0 ≤ d̂ij+ ≤ smax,

(12)
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Fig. 2: One level of weak-structure enhancement. A bottom-up
process builds the Gaussian pyramid. A top-down process then com-
putes the high-pass bands of a Laplacian pyramid and enhances them
using a gain map and two correction passes (‘corr1’ and ‘corr2’).

which is linear.
Linear programming problems are particularly interesting. First,

there are no poor local optima since all local optima are also global
optima [10]. Second, these problems have been extensively studied
and several methods exist to solve them [10]. Here, however, the size
of the images, and therefore the number of variables and constraints
in the optimization, precludes these methods. Instead, we propose
an efficient algorithm which provides an approximate solution.

3. IMPLEMENTATION

As mentioned in the previous section, the proposed algorithm first
reduces the image range using a global transfer function and then
enhances the weak structures by finding an approximate solution to
the optimization problem (11). Figure 2 gives an overview of the
enhancement process.

The separable binomial filter [1 4 6 4 1]/16 is used as low-pass
filter in the upsampling and downsampling operators of the Lapla-
cian pyramid. The binomial filter does not suffer from ringing arti-
facts, which means that upsampling and downsampling do not create
artifacts. The binomial filter is implemented by multiplication-less
lifting [11]. The global transfer function is chosen to be logarithmic
and applied using a look-up table.

3.1. Weak-Structure Amplification

The enhancement begins by setting the enhanced signal d̂ to the val-
ues given by the gain equation (2). This implements the objective
function and the second constraint of the optimization problem (11).

Here we rely on the following gain function

g(d̃ij) = min
(k,l)∈N3×3(i,j)

�
1 + αe

−
d̃2

kl
σ2

�
(13)

where N3×3(i, j) is the 3 × 3 block of pixels centered at (i, j), α
is a parameter controlling the enhancement, and σ2 is a parameter
controlling the bias toward weak structures. Both parameters can
take different values at each level to enhance specific structures.

3.2. First Correction

The first correction pass reduces the enhancement signal d̂ to avoid
overflow artifacts. This implements the first constraint of the opti-
mization problem (11). The values of the enhancement signal d̂ are

(a) Original image

(b) Global transfer function (c) Proposed algorithm

Fig. 3: A crop from the skull image (a) processed without enhance-
ment (b) and with enhancement (c). The proposed algorithm is able
to compress the range while preserving the image structural content.

updated using the equation

d̂ij ←

��
�

min
�
d̂ij ,−ĉij + smax

�
if dij ≥ 0,

max
�
d̂ij ,−ĉij

�
otherwise.

(14)

3.3. Second Correction

The second correction pass reduces the enhancement signal d̂ to
avoid artifacts such as overshoots and gradient inversions. This im-
plements the third and fourth constraints of the optimization prob-
lem (11). The pixels are updated in a sequential order via two raster
scans, one forward (left-to-right and top-to-bottom) and one back-
ward. Approximating the partial derivatives by the finite difference
kernel [−1 1], and fixing the values of the pixel neighbors in (11)
leads to the update equation

If d̂ij ≥ 0,�������
������

τ ← min
(k,l)∈N4(i,j)

�
Δkl

ij

�
βmax1Δkl

ij
≥0 + βmin1Δkl

ij
<0

�

+ ε + ĉkl − ĉij + d̂kl

�
,

d̂ij ← max(0, min(τ, d̂ij)),

otherwise,�������
������

τ ← max
(k,l)∈N4(i,j)

�
Δkl

ij

�
βmin1Δkl

ij
≥0 + βmax1Δkl

ij
<0

�

− ε + ĉkl − ĉij + d̂kl

�
,

d̂ij ← min(0, max(τ, d̂ij)),
(15)

where Δkl
ij = s̃ij− s̃kl,N4(i, j) is the 4-neighborhood around pixel

(i, j), and 1(.) is the zero-one function which takes value 1 when its
subscript is true and 0 otherwise.

4. EXPERIMENTAL RESULTS

We present experimental results on two real images (spine and skull)
over which synthetic patterns have been added to help study artifacts.
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(a) Laplacian pyramid

(b) Proposed algorithm

Fig. 4: A crop from the spine image enhanced by a classical
Laplacian-based method (a), and by the proposed algorithm (b). The
1D intensity profiles are taken along the horizontal magenta line.
The proposed algorithm avoids haloes around edges.

The images are 3114 by 3115 in size, for a total of about 9.7Mpx.

The software implementation reduces the image range by a fac-
tor of four, from 14b (max s = 16383) to 12b (max ŝ = smax =
4095). The experiments have been run with a 6-level pyramid. The
gains α have been set to 0 at the finest level to reduce the noise am-
plification and make the algorithm run faster, and to 3 at the other
levels. The parameters σ, ε, βmin, and βmax have been set respec-
tively to 10−1smax, 10−3smax, 3/4 and 5. The experiments have
been run on a Pentium 4 at 2.8GHz. In spite of the large image size,
it takes only 1.95s to process each image.

Figure 3 shows a crop of the skull image after applying the
global transfer function, and after applying weak-structure enhance-
ment. It confirms the ability of the proposed algorithm to preserve
the contrast of both weak and strong image structures.

Figure 4 shows a crop of the spine image enhanced without ar-
tifact correction (classical pyramid enhancement), and with the pro-
posed method. Unlike classical pyramid enhancement, the proposed
method does not generate haloes in regions surrounding large inten-
sity variations, like those around the synthetic squares for instance.

Figure 5 shows a crop of the skull image enhanced with bilat-
eral filtering [5], and with the proposed method. Unlike bilateral
filtering, the proposed method does not create gradient inversions in
slowly varying regions, like those surrounding the dark central area
for instance.

5. CONCLUSION

In this paper, we have introduced a fast compression method based
on the Laplacian pyramid, which avoids common artifacts such as
loss of contrast, haloes and gradient inversions. We have shown that
the artifact correction can be formulated as a linear-programming
problem, for which we have proposed an efficient approximate so-
lution. The effectiveness and speed of the proposed algorithm have
been demonstrated on real medical images. Future work shall aim at
generalizing the proposed method to image sequences.

(a) Bilateral filter

(b) Proposed algorithm

Fig. 5: A crop from the skull image enhanced using the bilateral fil-
ter (a), and by the proposed algorithm (b). The 1D intensity profiles
are taken along the horizontal magenta line. The proposed algorithm
avoids gradient inversions in slowly varying regions.
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