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ABSTRACT

Space-time separability has been assumed and applied to most

of data analysis methods in functional magnetic resonance

imaging (FMRI). In a recent work, we developed a procedure

for testing space and time separability in the framework of

the parametric cepstrum. In this paper, the asymptotic power

of the proposed space-time separability test is analyzed. The

analysis shows two important properties of the proposed test.

The asymptotic power function involves cepstral coefficients

only in the non-separable region (parameters of interest). And

the non-centrality parameter of the asymptotic power function

is a scaled Euclidean metric between the logarithms of a non-

separable power spectral density (PSD) and a separable PSD.

Index Terms— FMRI data analysis, space-time separa-

bility, the parametric cepstrum, and asymptotic power.

1. INTRODUCTION

In FMRI data analysis, a significant task for a collected dataset

is to detect localized activations in the brain induced by given

stimuli. Since space-time separability simplifies the problem

significantly, in most approaches for the activation study, it

has been assumed and accepted without proper justifications.

Conceptually, space-time separability implies that spatial and

temporal operations can be separately performed for proper

activation detection. In SPM, spatial smoothing by Gaussian

kernel is first applied to a collected dataset. Then, a general

linear model (GLM), leading to temporal filtering, is built up

to create an activation map.

For a given dataset, however, the validity of space-time

separability assumption is unknown without a proper test. To

the best of authors’ knowledge, in FMRI, any testing for space

and time separability has not been properly treated until now.

We recently developed a procedure for testing space and time

separability and discussed only its null distribution [1]. In this

paper, we analyze the asymptotic power of the proposed test

and examine its characteristics to complete the development.

This is the first theoretical power analysis in FMRI, especially

for detecting space-time separability. Simulation studies for

testing space and time separability are computationally very

expensive, and are thus intractable.

2. TESTING SPACE-TIME SEPARABILITY

2.1. Measurement Model Formulation

We consider a typical measurement model in FMRI, which

has a linear and additive form. For a time point t and a voxel

location v, we assume that the measurement has the form of

yt,v = XT
t βv + st,v + wt,v, (1)

where βv contains nuisance signals, for example, temporally

varying drift, and st,v models the the blood oxygenation level

dependent (BOLD) response of the brain. The noise wt,v is a

spatiotemporally correlated and stationary Gaussian random

field whose mean is zero. For a given stimulus denoted as ct,

the BOLD response can be described linearly as

st,v =

(
L∑

i=1

hi,tfi,v

)
∗ ct � ξT

t fv, (2)

where hi,t is the i-th basis for modeling temporal responses,

fi,v denotes the corresponding activation amplitude to model

spatial responses, and L is the number of basis functions. It

is shown in [2] that this linear model provides an accurate

approximation of the BOLD response to the first order. For

integer t and v, we assume yt,v is observed from a rectangle,

{0, . . . , T − 1} × {0, . . . , M − 1}, where T is the number of

time points and M is the number of voxels in a ROI.

2.2. Test Statistic for Space-Time Separability

Because the analysis in the spatial and temporal frequency

domains allows a substantial amount of simplifications, we

perform a test in the frequency domain. Taking the DFT in

(1) yields

ỹk,l = X̃T
k β̃l + ξ̃T

k f̃l + w̃k,l, (3)

where k denotes temporal frequency and l denotes spatial

wave-number. Under some regularity conditions involving

joint cumulants, for large T and M , central limit theorem

(CLT) allows an asymptotic distribution,

1√
TM

· w̃k,l ∼ Nc(0, Fk,l), (4)

where Nc denotes a complex-valued Gaussian distribution and

Fk,l is power spectral density (PSD) of the noise [3]. Now, we

5371-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



have the following approximate negative log-likelihood:

2�(β̃, f̃ , θ) �
T−1∑
k=0

M−1∑
l=0

log Fk,l +

∣∣∣ỹk,l − X̃T
k β̃l − ξ̃T

k f̃l

∣∣∣2
TM · Fk,l

,

(5)

where, e.g., f̃ � [f̃0, . . . , f̃M−1]
T

, and θ contains parameters

for modeling PSD, that are called the cepstral coefficients.

Space-time separability means the decomposition of the

PSD into its pure temporal piece and pure spatial piece, that

is, for ∀(k, l), Fk,l = FkGl, where Fk is temporal PSD and

Gl is spatial PSD. We therefore have the following non-linear

hypothesis testing problem:

H0 : Fk,l = FkGl vs H1 : Fk,l �= FkGl, (6)

where H0 indicates wt,v is a space-time separable field and

H1 means its alternative. From (6), we construct a likelihood

ratio test (LRT), leading to the following test statistic:

LS � 2�(̂̃β1,
̂̃
f1, θ̂1) − 2�(̂̃β0,

̂̃
f0, θ̂0), (7)

where all estimates are maximum likelihood estimates (MLEs).

For example, F̂1,k,l is the MLE of the PSD under H1.

3. REFORMULATION IN THE CEPSTRAL DOMAIN

To make a valid test procedure for space-time separability, we

need to control false positive rate (FPR), the probability of

type I error. The null distribution of LS enables to compute a

threshold for α significance label. The cepstrum provides us

an useful framework to obtain an asymptotic null distribution

of LS . In fact, in multi-dimensions (3D or 4D in FMRI), noise

modeling by the parametric cepstrum has several advantages

over AR-based methods [4]. For example, model fitting by

the parametric cepstrum is almost linear and can be performed

very quickly with FFT [1, 4].

3.1. Parametric Cepstrum

We consider a Fourier series expansion of the logarithm of

PSD. By truncating the array of Fourier coefficients, we have

a modeling of a PSD by the parametric cepstrum.

For −π ≤ ω, λ ≤ π,

log F (ω, λ) =
n∑

t=−n

p∑
v=−p

θt,ve−j(ωt+λv), (8)

where n and p denote a temporal order and a spatial order of

the model, respectively [4]. Due to a real-valued PSD, note

that the cepstrum has a symmetry, θt,v = θ(−t,−v) for ∀(t, v).
For non-separable fields, we estimate Ra(� 2np+n+p+1)
cepstral coefficients. One benefit of the cepstral modeling is

a linear description of space-time separability. The condition

for space-time separability is as follows. For (t, v) �= (0, 0),

θt,v = θt,0δ0,v + θ0,vδt,0, (9)

where θt,0 is a cepstral coefficient along the temporal axis and

θ0,v is a cepstral coefficient on the spatial plane. For separable

fields, we estimate Rs(� n + p + 1) cepstral coefficients.

3.2. Controlling False Positive Rate

Importantly, we have a simple equivalent hypothesis testing

problem to (6) in the cepstral domain. For ∀(t, v) ∈ Θns,

H0 : θt,v = 0 vs H1 : θt,v �= 0, (10)

where Θns is called the non-separable region. We define

Θa � {|t| ≤ n, |v| ≤ p} = Θs ∪ Θns, Θns = Θc
s, (11)

Θs � {t = 0, |v| ≤ p} ∪ {|t| ≤ n, v = 0},

where the whole set of indices Θa is partitioned into Θns (the

non-separable region) and Θs (the separable region). From

an asymptotic null distribution of LRT [5], the reformulated

hypotheses in (10) yields, for α significance level,

γ(α) = Φ−1
Rns

(1 − α), (12)

where ΦRns
(t) denotes the cumulative density function (CDF)

of a central chi-square distribution with Rns(� Ra − Rs =
2np) degrees of freedom. Details of the model fitting for the

proposed space-time separability test are provided in [1].

4. ASYMPTOTIC POWER ANALYSIS

To analyze the asymptotic power of the proposed procedure

for testing space-time separability, an asymptotic distribution

of LRT under H1 is required. Since the proposed test, in the

presence of nuisance parameters, e.g., cepstral coefficients in

Θs and activation amplitudes, involves samples which are

non-identically distributed, an asymptotic expansion of the

statistic LS under H1 is a non-trivial task. While this kind of

problem has long been discussed in the statistics literature, the

conventional work, e.g., [6], deals only with independently

and identically distributed samples, and is not applicable.

In a recent work, when samples have serial correlation and

nuisance parameters exist, an asymptotic expansion of a class

of test statistics including LRT is derived for a sequence of

local alternatives [5]. Here, the main result in [5] is applied to

derive the asymptotic distribution of LS for a non-separable

field, i.e., under H1. In fact, some regularity conditions are

required for [5], which are briefly described below. These

regularity conditions can be straightforwardly checked in our

current setups for LS , but it is tedious to show.

4.1. Asymptotic Expansion of LRT under a Local H1

Suppose that η denotes a vector containing lexicographically

ordered parameters of interest and η0 is specified by a given

null hypothesis. A vector μ is similarly defined for nuisance

parameters. We are interested in an asymptotic expansion of
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a LRT statistic for a sequence of local alternatives, defined as

η = η0 + ε/
√

n′, where n′ is the number of samples.

According to [5], under regularity conditions involving

the validity of asymptotic expansions of cumulants and the

differentiability of log-likelihood function, a test statistic T
belonging to a class which includes LRT has the following

asymptotic expansion for a sequence of local alternatives:

P (T < t) = Ψd,Δ(t)+
1√
n′

3∑
q=0

mqΨd+2q,Δ(t)+o

(
1√
n′

)
,

(13)

where Ψd,Δ(t) denotes the CDF of a non-central chi-square

distribution with d degrees of freedom and Δ non-centrality

parameter. mqs are computed from asymptotic expansions of

the first and second order derivatives of a given log-likelihood

function. Remarkably, the degrees of freedom is the same as

the length of η and the non-centrality parameter Δ is given in

terms of Fisher information matrix (FIM). We have

Δ = εT
(I11 − I12I−1

22 I21

)
ε

∣∣∣∣
η=η0

, (14)

where, following the partition of the parameter space into two

parts, FIM is also partitioned into

I(η, μ) �
[ I11(η) I12(η, μ)

I21(μ, η) I22(μ)

]
. (15)

I11(η) is associated only with parameters of interest and I22(μ)
involves only nuisance parameters. If matrix I12(η0, μ) is a

zero, the non-centrality parameter simplifies into

Δ = εTI11(η0)ε. (16)

The non-centrality parameter is thus independent of nuisance

parameter μ, so that the corresponding asymptotic power does

not depend on nuisance parameter. In fact, it turns out that

this is the case of the proposed test procedure for space-time

separability.

4.2. Asymptotic Power of the Test Procedure

We applied the general result in the previous section to the

proposed statistic for space-time separability in this section.

Modeling by the parametric cepstrum given in (8) allows an

expression for the logarithm of a sampled PSD as follows:

log Fk,l � log F

(
2πk

T
,
2πl

M

)
= xT

k,lθ
ns + zT

k,lθ
s, (17)

where θns denotes a lexicographically ordered column vector

containing cepstral coefficients in Θns and xk,l is a vector

containing associated cosine terms. Note that sine terms in (8)

are canceled due to the symmetry of cepstra. θs and zk,l are

similarly defined for cepstral coefficients in Θs. We have k =
0, . . . , T −1 and l = 0, . . . , M−1. Then, by substituting (17)

into (5), the following fully parameterized negative likelihood

function is obtained:

2�(β̃, f̃ , θs, θns) =
T−1∑
k=0

M−1∑
l=0

xT
k,lθ

ns + zT
k,lθ

s +
1

TM

× exp(−xT
k,lθ

ns − zT
k,lθ

s)
∣∣∣ỹk,l − X̃T

k β̃l − ξ̃T
k f̃l

∣∣∣2. (18)

To simplify the discussion, we first consider the non-centrality

parameter Δ for a simplified case without signal components,

β̃ and f̃ . Then, we reconsider those signal components in the

general development. In fact, it turns out that results from the

simplified case are useful in the general development. After

determining Δ, an asymptotic power function can be obtained

by combining the central chi-square distribution in (12) and

the non-central chi-square distribution in (13) for a given α.

4.2.1. Case I: without signal components

To compute the non-centrality parameter Δ, FIM is required

in (14). Assuming β̃ = 0 and f̃ = 0, it can be shown that the

expected values of the second order derivatives of 2�(θs, θns)
are given by, noting that θns

i is the i-th element of θns and θs
j

is the j-th element of θs,

E
[

∂22�

∂θns
i ∂θns

m

]
=

T−1∑
k=0

M−1∑
m=0

xk,l,ixk,l,m = 2TM · δi−m,

(19)

E

[
∂22�

∂θs
j∂θs

n

]
=

T−1∑
k=0

M−1∑
m=0

zk,l,jzk,l,n

=
{

TM if j = n = 1
2TM · δj−n otherwise

, (20)

E
[

∂22�

∂θns
i ∂θs

n

]
=

T−1∑
k=0

M−1∑
m=0

xk,l,izk,l,n = 0. (21)

where xk,l,i denotes the i-th element of xk,l and zk,l,j denotes

the j-th element of zk,l. Note E[|ỹk,l|2] = TM ·Fk,l by CLT,

that plays a key role to derive (19)-(21). Since xk,l and zk,l

involve only harmonic cosine functions, the second equalities

in (19)-(21) can be shown for 0 < n 
 T and 0 < p 
 M ,

which is usually the case in cepstrum modeling. From (19)-

(21), we have the following FIM:

I(θns, θs) �

⎡⎣ IRns×Rns
0 0

0 1
2 0

0 0 I(Rs−1)×(Rs−1)

⎤⎦ , (22)

where the identity matrix with a size of Rns×Rns in the upper

block is associated with cepstral coefficients in Θns, defining

I11(θns). The entry in the center and the identity matrix in the

lower block are associated with cepstra in Θs, giving I22(θs).
Particularly, the entry in the center corresponds to the cepstral

coefficient at the origin, i.e., (t, v) = (0, 0). From (14), we

have a non-centrality parameter of

ΔS = TM · (θns)T IRns×Rns
(θns). (23)
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4.2.2. Case II: general development with signal components

We now reconsider two signal components. For convenience,

β̃ and f̃ are decomposed into their real and imaginary parts,

β̃ � β̃R +jβ̃I and f̃ � f̃R +jf̃ I . Re-parameterization of the

approximate negative log-likelihood function takes the form

of 2�(β̃R, β̃I , f̃R, f̃ I , θs, θns). Differentiating this function

2�(·) with respect to each part of f̃l and θns
i , and then taking

the expectation of it yield the following results:

E

[
∂22�

∂f̃R
l ∂θns

i

]
= 0, E

[
∂22�

∂f̃ I
l ∂θns

i

]
= 0, (24)

where, e.g., f̃R
l is the l-th element of f̃R. Similarly, we obtain

the following results for β̃R
l and β̃I

l :

E

[
∂22�

∂β̃R
l ∂θns

i

]
= 0, E

[
∂22�

∂β̃I
l ∂θns

i

]
= 0. (25)

Now, combining (22), (24), and (25) yields the following FIM:

I(θns, θs, β̃, f̃) �

⎡⎣ IRns×Rns
0 0

0 I(θs) I(θs, β̃, f̃)
0 I(β̃, f̃ , θs) I(β̃, f̃)

⎤⎦ ,

(26)

where IRns×Rns
defines I11(θns) and the remaining partition

in the lower center block specifies I22(θs, β̃, f̃). Note that the

other partitions are all zero, giving I12(θns, θs, β̃, f̃) = 0.

From (14), the non-centrality parameter is given by

ΔS = TM ·
Rns∑
i=1

(θns
i )2, (27)

indicating that the non-centrality parameter is independent of

signal components (β̃ and f̃ ) and cepstral coefficients in Θs

for a given Rns. From (8), it can be shown that ΔS leads to

2ΔS =
(

1
2π

)2 ∫∫
(log F (ω, λ) − log FS(ω, λ))2dωdλ.

(28)

Thus, 2ΔS is an Euclidean metric between the logarithms of a

non-separable PSD, F (ω, λ) and a separable PSD, FS(ω, λ)
[7]. Since θ0,0 corresponds to the amplitude of a PSD and

other θt,vs are associated with the shape of that PSD, we can

recognize the independence of ΔS and θ0,0 from (28).

The asymptotic alternative distribution of LS is given by

LS ∼ χ2
Rns,ΔS

, (29)

where χ2
Rns,ΔS

is a non-central chi-square distribution with

Rns degrees of freedom and ΔS non-centrality parameter in

(27). We formulate the power, probability that the proposed

separability test detects non-separability when H1 is true. The

power function takes the form of

PSep(θns) = 1 − ΨRns,ΔS

(
Φ−1

Rns
(1 − α)

)
. (30)

Assuming only one non-zero cepstral coefficient in Θns, an

example plot of PSep(θns) is placed on Fig.1 for α = 0.05,

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

θns

Po
we

r

Theoretical Asymptotic Power Function

Fig. 1. An example plot of PSep(θns) for α = 0.5.

Rns = 2540, T = 99, and M = 1435, the same setup for the

human dataset used in [1].

For a given model order (n, p), some important remarks

on the asymptotic power can be drawn. Firstly, the asymptotic

power is independent of nuisance parameters, e.g., activation

amplitudes. Secondly, the asymptotic power is independent of

the locations of cepstral coefficients in Θns and only affected

by the values of cepstral coefficients in Θns.

5. CONCLUSIONS

We analyzed the asymptotic power of the recently proposed

test for space-time separability. The asymptotic power of the

test procedure was not dependent on nuisance parameters,

e.g., activation amplitudes. It was only dependent on cepstral

coefficients in the non-separable region and was independent

of the locations of cepstral coefficients. The non-centrality

parameter of the asymptotic power was a scaled Euclidean

distance between the logarithms of a non-separable PSD and

a separable PSD.
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