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ABSTRACT

Functional magnetic resonance imaging (fMRI) data are
originally acquired as complex-valued images, while virtu-
ally all fMRI studies only use the magnitude of the data in
the analysis. Since little is known for devising models for the
phase, independent component analysis (ICA) emerges as a
promising technique for data-driven analysis of fMRI data in
its native complex form. In this paper, we compare the perfor-
mance of ICA on real-valued and complex-valued fMRI data
and show the advantages of the complex approach. We also
develop complex-valued order selection scheme to improve
the estimation of the number of independent components in
complex-valued fMRI data using information-theoretic crite-
ria. Comparisons on order selection using real-valued and
complex-valued fMRI data demonstrate the more informative
nature of complex data.
Index Terms— fMRI, ICA, Order Selection, Complex

Analysis

1. INTRODUCTION

FMRI is a non-invasive, powerful brain imaging technique
that has been utilized since the early 1990s [1], and has pro-
vided valuable insights to the understanding of the human
brain function. Even though the fMRI data is acquired as
complex-valued spatial-temporal data, commonly, only the
magnitude images are analyzed, and the phase of fMRI data
is discarded. The complex-valued data are expected to be
more informative, which implies that direct analysis on the
complex-valued fMRI data may produce more useful results,
provided that effective analysis tools can be adopted.
Because fMRI relies on the detection of small intensity

changes over time, it poses significant challenges for data
analysis techniques. Model-based analysis approaches, such
as linear regression, are widely used. Generalized likelihood
ratio tests have been developed for complex-valued fMRI data
[2]. Model-based approaches are robust, yet often too rigid to
capture the richness of the human brain activation.
ICA, on the other hand, is a data-driven approach that pro-

vides a more flexible framework for the analysis of fMRI data
[3]. The advantage of ICA lies in its ability to estimate cogni-
tive processes when detailed a priorimodels are not available.
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ICA of complex-valued fMRI has been noted as a promising
method for the study of fMRI data [4], [5]. High dimensional-
ity and high noise level of the fMRI data suggest that order se-
lection is critical to the success of the ICA approach, because
overestimation or underestimation of the ICA model causes
problems in the reliability of the estimation. In [6], the or-
der estimation problem is addressed for real-valued fMRI data
and a subsampling scheme to improve order selection perfor-
mance has been proposed. In this paper, we extend the work
to improve order selection performance for complex-valued
fMRI data. We make comparisons between real-valued and
complex-valued fMRI data using ICA and show the advan-
tage of using the complex approach.
In the next section, we discuss fMRI and introduce an ICA

approach in the complex domain. In section 3, we develop an
order selection scheme in complex domain based on indepen-
dent, identically distributed (i.i.d.) samples. Furthermore, we
show experimental results on order selection and ICA estima-
tion, both on simulated and actual fMRI data. We conclude
the paper with a discussion of the results.

2. COMPLEX-VALUED ICA OF FMRI

The MRI signal is acquired as a quadrature signal using two
orthogonal detectors, to compose a complex form in frequency
domain (k-space). Then through inverse Fourier transform,
the complex-valued fMRI data in the spatial domain is ob-
tained, and typically the magnitude of the data is used in fur-
ther analysis. Although the phase of complex fMRI data may
be more prone to noise effects, recent work has shown the
potential of using the complex-valued data in the analysis [7].
We assume independence of spatial brain activations (spa-

tial ICA) of fMRI data, and write the complex ICA model as:

X =
M∑

k=1

aksT
k + n (1)

where sk is the N × 1 vector, which represents the activation
intensity of each voxel, for the kth independent spatial map;
ak is an N × 1 vector, representing time course of the kth
independent spatial map component. Here all variables are
complex-valued and M is the number of informative spatial
map sources, N the number of voxels in each spatial map
source, T the number of time points in the time course, and n
is the T × N matrix of Gaussian noise components.
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The information maximization (nonlinear decorrelation)
algorithm, which is equivalent to maximum likelihood (ML),
is an attractive approach for ICA estimation and it yields re-
liable result in real-valued fMRI analysis [8]. The complex-
valued nonlinear decorrelation algorithm [4], [9] is employed
in our experiments.

3. COMPLEX-VALUED ORDER SELECTION

3.1. Information-theoretic criteria

Information-theoretic criteria (ITC) are commonly used for
order selection in many signal processing problems, includ-
ing ICA. There are a number of ITC commonly used for or-
der selection, such as, Akaike’s information criterion (AIC)
[10], Kullback-Leibler information criterion (KIC) [11], and
the minimum description length criterion (MDL) [12]. The
formulas for AIC, KIC and MDL criteria have similar struc-
tures [13]:

EAIC(k) = −2L(x|Θk) + 2G(Θk)

EKIC(k) = −2L(x|Θk) + 3G(Θk)

EMDL(k) = −L(x|Θk) +
1
2
G(Θk) log N

where L(x|Θk) is the maximum log-likelihood of the obser-
vations x, based on the model parameter set Θk and G(Θk)
the penalty for model complexity given by the total number of
free parameters in Θk. For MDL, the penalty term is scaled
by logN where N is the sample size.
The maximum log-likelihood for complex-valued data is

given by

L(x|Θk) = N log

(∏T
i=k+1 λ

1/(T−k)
i

1
T−k

∑T
i=k+1 λi

)T−k

where T is the original dimension of the multivariate data,
k is the candidate order, N is the sample size, and λi’s are
the eigenvalues of the sample covariance matrix of the multi-
variate observations. The number of free parameters in G(Θk)
for complex-valued data is given by

G(Θk) = 1 + 2Tk − k2.

3.2. IID sampling in complex domain

Order selection formulations are typically based on an i.i.d.
sample assumption [13]. However, there is inherent spatial
smoothness in the fMRI data due to the point spread function
of the scanner. Furthermore, smoothing is a common prepro-
cessing step used to suppress the high frequency noise in the
fMRI data. Both factors contribute to dependence among the
samples in fMRI volume data, which leads to over-estimation
of the order number. To address this problem, a subsampling
scheme is proposed to identify an effectively i.i.d. sample set
from the whole fMRI volume for real-valued data [6]. The
method can be extended to the complex case as we discuss
next.

Given a complex-valued Gaussian random process z[n] =
x[n] + iy[n], n = 1, 2, . . . , N , where the real and imagi-
nary parts are assumed to be uncorrelated, the entropy rate
of complex-valued Gaussian process z[n] is the sum of the
entropy rate of the real part x[n] and imaginary part y[n], ex-
pressed as

hz = hx+hy = ln(2πe)+
1
4π

∫ π

−π

ln sx(ω)dω+
1
4π

∫ π

−π

ln sy(ω)dω

where s(ω) is the power spectral density function. For the
fMRI data used in this study, the correlation values for Gaus-
sian sequences obtained through principal component analy-
sis (PCA) are 0.058 ± 0.026. Thus the uncorrelatedness con-
dition is approximately satisfied. In [14], it is shown that the
real and imaginary parts of MR images can be characterized
as independent random variables.
For a complex-valued stationary Gaussian random pro-

cess, if the real and imaginary parts are independent, the up-
per bound of the entropy rate is ln(2πe) and the upper bound
is achieved if and only if all samples of the process are i.i.d.
By comparing the entropy rate of the subsampled data with
that of an i.i.d. process, the grid of locations on which the data
samples are considered to be effectively independent is deter-
mined. Therefore, an effective i.i.d. sample set is obtained on
this grid of spatial locations at which the dependence among
the samples is small enough to be ignored. Since the sub-
sampling procedure decreases the number of samples for es-
timation, an eigenspectrum adjustment scheme [6] is used to
mitigate the finite sample effect.

4. EXPERIMENT

4.1. Order selection on simulated data

We generate eight complex-valued spatial maps to simulate
the fMRI sources and corresponding time courses, the mag-
nitudes of which are similar to the ones used in [8]. In the
fMRI experiment, the phase difference induced by the task
activation is typically less than π/9 [7], [15]. Therefore, we
keep the phase of each pixel uniformly distributed in the range
[−π/18, π/18]. The phase of each complex-valued time point
is generated proportional to its magnitude, but restricted to a
small range, which is less than π/18. The spatial sources
are rearranged into one-dimensional vectors and mixed by
the corresponding time courses, as in Eq. (1). Complex-
valued Gaussian noise is added to the data set with a speci-
fied contrast to noise ratio (CNR). The mixture data are spa-
tially smoothed, separately for the real and imaginary parts,
by a Gaussian kernel with the full-width at half maximum
(FWHM) of 2 pixels.
The complex-valued mixtures of eight sources, with dif-

ferent noise levels of CNR = −3, 0, 3 and 6 dB, are created
and the complex-valued order selection described in Section
3.2 is applied to these mixtures. The criteria used in the ex-
periment are AIC, KIC and MDL. Fig. 1 shows the result of
10 Monte Carlo simulations where a different noise realiza-
tion is used for each run. The standard deviation is stacked on
the mean value in each bar plot.
As shown in Fig. 1, the criteria yield accurate estimates

when the CNR is higher than 0 dB. Without subsampling, the
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Fig. 1. Order selection on simulated data with different CNR
values: −3, 0, 3 and 6 dB

order number is significantly overestimated, e.g., 98 ± 1 by
AIC, 95± 2 by KIC and 68± 6 by MDL for CNR = 3 dB. In
another experiment, we randomly choose four sources from
all eight sources and mix them together at different CNR val-
ues. The true order is estimated when the CNR value is higher
than 0 dB. CNR of actual fMRI data is typically in the range
0 − 3 dB, and our complex-valued order selection scheme is
effective for this CNR range.

4.2. FMRI data

Eight sets of fMRI data, which are related to a visuomotor
task, are the same data used in [6]. TheMATLAB Toolbox for
Statistical Parametric Mapping (SPM) is used for motion cor-
rection to magnitude data and the resulting parameters are ap-
plied to real and imaginary part of the complex-valued fMRI
data, resulting in the motion-corrected complex images. Then
the real and imaginary images are spatially smoothed with
an 8×8×8 mm FWHM Gaussian kernel, to improve CNR
of complex-valued fMRI data. The magnitude of smoothed
complex-valued data is taken as real-valued fMRI data.
A real-valued order selection scheme in [6] and a complex-

valued scheme described in Section 3 are applied to the fMRI
data. The criteria used in the experiment are AIC, KIC and
MDL. Fig. 2 shows the result based on eight subjects. The
standard deviation across different subjects is stacked on the
mean value in each bar plot. It is observed that the order es-
timated for complex-valued fMRI data is higher than that of
real-valued data, which indicates that complex-valued fMRI
data contain more information than real-valued data. For sub-
sequent ICA results, we use the order estimated by AIC, i.e.,
20 for real-valued data and 30 for complex-valued data.
Using PCA, the real-valued data are reduced from 119

time points to 20 principal components and the complex-valued
data to 30. An ICA algorithm, using nonlinear decorrela-
tions with the nonlinear function atanh(·), is applied to the
dimension reduced data. The time-courses and spatial maps
are reconstructed after ICA. For the real-valued fMRI data,
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Fig. 2. Order selection on real-valued and complex-valued
fMRI data

the resulting spatial maps and for the complex-valued fMRI
data, the magnitudes of complex spatial maps are converted
to Z-scores. All maps are thresholded at |Z| > 2.
In our experiments, the voxels of whole brain images are

applied in ICA estimation, which improves statistical power
compared with previous work that restricts ICA analysis to
the posterior half of the brain [5], [15]. For performance com-
parison, three typical spatial components associated with the
task are used, left task-related (LTR), right task-related (RTR)
and the default mode (DM). Fig. 3 shows the spatial activa-
tion map of DM from real-valued and complex-valued data in
one experiment. We perform ICA estimations 10 times with
random initial conditions for each subjects and calculate the
average. Fig. 4 shows the comparison of number of voxels in
the thresholded activation area and Fig. 5 shows the compari-
son of maximum and mean of Z-scores in the activation area.
The standard deviation across different subjects is stacked on
the mean value in each bar plot.
For all three components in Fig. 4, number of voxels

in activation area from complex-valued fMRI data is larger
than that from real-valued data. Fig. 5 shows that the maxi-
mum and mean of Z-scores in activation area from complex-
valued fMRI data are higher than that from real-valued data.
We show an example of DM from one experiment in Fig. 3.
The increase of number of voxels, maximum and mean of Z-
scores indicates higher sensitivity of the estimation method in
complex-valued approach.

5. DISCUSSION

Through comparisons of the performance of ICA on real-
valued and complex-valued fMRI data, we observe that com-
plex ICA applied to fMRI data increases the sensitivity of ICA
for estimating brain activations. Optimization of complex-
valued ICA algorithms need to be studied in more detail to
facilitate fMRI analysis. We develop an improvement for or-
der selection in complex domain to address overestimation of
the order due to voxel dependence. The implementation to ac-
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Fig. 3. Spatial activation map of DM, (a) from real-valued
data, (b) from complex-valued data
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Fig. 4. Number of voxels in activation area of components
estimated from real-valued and complex-valued fMRI data,
Z > 2
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Fig. 5. Maximum and mean of Z-scores in activation area of
components estimated from real-valued and complex-valued
fMRI data, Z > 2

tual fMRI data demonstrates that the order of complex-valued
fMRI data is higher than that of real-valued data, which sug-
gests that complex-valued fMRI data might be more informa-
tive than real-valued data. The effect of order selection on
the performance of complex ICA algorithms deserves further
investigation.
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