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ABSTRACT

The left ventricle in MR images presents many challenges

for automated segmentation including poor contrast at de-

sired tissue boundaries. Segmentation methods based on in-

formation from the image alone do not work well in such

cases and additional constraints are necessary. In this pa-

per, we propose a novel segmentation method that incorpo-

rates parametric shape priors, which do not require statistical

training, to the graph cuts technique for robust and efficient

segmentations of the left ventricle in cardiac images. We in-

troduce novel terms accounting for shape prior/segmentation

and shape prior/image fit to the graph cuts representation. The

latter prevents a vicious cycle of bad segmentation/shape pri-

ors. We demonstrate the effectiveness of our method on real

cardiac images with ground truth segmentations.

Index Terms— Left ventricle segmentation, shape prior,

graph cuts, cardiac MRI, expectation maximization, Gaussian

mixture model.

1. INTRODUCTION

Segmentation of cardiac structures in medical images leads to

many applications, which can assist the diagnostics of cardiac

diseases. The left ventricle is of special importance, because

it pumps oxygenized blood away from the heart to the rest of

the body. Manual segmentation of cardiac images by human

experts can be time-consuming. Data segmented by human

experts also tends to show inter- and intra-observer inconsis-

tency. For these reasons, automated segmentation of the left

ventricle in cardiac images is of great interest.

The left ventricle in MR images presents many challenges

for automated segmentation. For example, desired tissue bound-

aries, such as those between the epicardium and the liver and

those between the endocardium and the blood pool, can have

poor contrast. On the other hand, strong contours may exist

where boundaries are not desired [1]. Segmentation methods

based on information from the image alone do not work well

in such cases and additional constraints are necessary.

[2] and [3] proposed level set-based segmentation meth-

ods for cardiac images. In [4], a method combining edge,

region and shape information is presented. These algorithms

require a large amount of training cases, which can be diffi-

cult to obtain and time consuming to process. In short-axis

MR cardiac images, the left ventricle roughly resembles the

shape of a donut. Therefore, simpler parametric shape priors,

which do not require statistical training, may suffice.

The graph cuts-based segmentation method has recently

become popular because it allows for a globally optimal ef-

ficient solution in an N-dimensional setting [5]. Despite its

advantages, graph cuts cannot produce an accurate segmenta-

tion for objects with weak boundaries. There have been recent

attempts to add a shape prior to the graph cuts segmentation

technique. [6] presented a method that uses a fixed shape

template aligned with the image by the user input. In [7],

a model based method for left ventricle segmentation is pre-

sented. [8] proposed the usage of an elliptical prior. This

method iteratively solves for the image segmentation and el-

liptical fitting problems and the elliptical shape is estimated

as the best least square fit of the segmentation. Although, this

method cannot correct for inaccurate segmentations and bad

segmentations inevitably lead to bad elliptical priors.

In this paper, we propose a novel segmentation method

that incorporates parametric shape priors, which do not re-

quire statistical training, to the graph cuts technique for ro-

bust and efficient segmentations of the left ventricle in car-

diac images. We introduce novel terms accounting for shape

prior/segmentation and shape prior/image fit to the graph cuts

representation. The latter prevents a vicious cycle of bad seg-

mentation/shape priors.

2. SEGMENTATION METHOD

In this section, we first give a brief summary of the graph

cuts image segmentation framework. We then discuss our

model for shape priors and representation of intensity prob-
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ability distribution. We end by presenting our novel objective

function and its optimization.

2.1. Graph Cuts

The basic graph cuts image segmentation framework is devel-

oped in [9]. The idea is as follows. An image is mapped onto

a weighted undirected graph G =< V, E > where each pixel

is represented as a node v ∈ V and each pair of neighboring

pixels is linked by an edge e ∈ E called an n-link. Two addi-

tional ”terminal” nodes, the source s and the sink t, represent

the object and the background. Every non-terminal node is

linked to s and t through edges called t-links. A cut on the

graph divides the nodes into two sets: one that is connect to

the source s and one that is connect to the sink t. The cost of

a cut is the sum of weights of all the edges severed by the cut.

The formulation of the edge weights depends on the specific

algorithm, but should be such that the minimum cut (i.e. the

cut with the minimum cost) on the graph gives the ideal seg-

mentation. There are numerous algorithms that can solve the

minimum cut problem in polynomial time [5].

Graph cuts can be extended to multiple labels using α-

expansion [5]. The α-expansion move assigns label α to an

arbitrary set of pixels. In the case of multiple labels, exact

minimum on the graph is generally NP-hard [10]. The α-

expansion move generates a local minimum that is within a

known factor of the global minimum when edge weights sat-

isfy certain conditions [10].

2.2. Shape Representation

We model the left ventricle using two concentric circles. We

denote the shape parameters as w = {w0, w1, w2, w3}, where

(w0, w1) is the center of the circles and w2 and w3 are re-

spectively the radii for the inner circle (representing the en-

docardium boundary) and outer circle (representing the endo-

cardium boundary). For convenience, we represent our shape

prior with signed distance functions, where boundary pixels

have the value of zero and inside and outside pixels are as-

signed negative and positive distances respectively. Our con-

centric circles are denoted as U = (U1,U2)T , where U1 and

U2 are respectively the signed distance functions of the inner

and outer circles in array forms.

2.3. Mixture of Gaussians

We model the intensity probability distribution of the image

with a Gaussian mixture model (GMM) using one Gaussian

for the blood pool, one Gaussian for the myocardium and

D − 1 Gaussians for the background. GMM has been ap-

plied previously to graph cuts segmentation in [11]. Let

θ = {μd, Σd, πd, d ∈ 0, ..., D} denote the parameters for

the GMM, where μd, Σd, πd are respectively the mean, vari-

ance, and prior probability of Gaussian d with d = 0 be-

ing for the blood pool (BP), d = 1 for the myocardium (M)

and d = 2, ..., D for the background (B). We define a pa-

rameter b =
((

bBP
1 , bM

1 , bB
1

)T
, . . . ,

(
bBP
N , bM

N , bB
N

)T
)

(where

bBP
n ∈ {0}, bM

n ∈ {1} and bB
n ∈ {2, ..., D}) that assigns all

N pixels in the image to one Gaussian belonging to the blood

pool, one to the myocardium and one to the background.

2.4. Objective Function

Our problem can be formulated as: given a cardiac image in

an array form I = (I1, . . . , IN ) with N pixels, we wish to (1)

identify the shape parameters w that best match the left ven-

tricle in the image, and (2) segment the image into blood pool

(BP), myocardium (M) and background (B). We assign a label

fn to each pixel, where fn ∈ {BP, M, B}. Our segmentations

are represented as label configurations f = (f1, . . . , fN ). The

segmentation and shape fitting problems are inter-related and

we solve them in an iterative manner.

We define the energy functional in equation (1) to guide

the image segmentation and shape parameters calculation.

E(I, θ,w, f ,b) = ED(I, θ, f ,b) + EN(I, f)
+EP(f ,w) + ES(w, I).

(1)

The first term measures how well the pixel labels and the

GMM parameters fit the image given its intensities and can

be written as

ED(I, θ, f ,b) = −
∑

n

log P(In, bn = d|θ), (2)

where bn = bfn
n . The second term measures the smoothness

of the label configuration and follows the standard graph cuts

formulation:

EN (I, f) =
∑

fn �=fm,n,m∈C

1
1 + (In − Im)2

, (3)

where n, m ∈ C denotes that pixel n and m are neighbors.

The third term denotes the fitness between the current shape

prior and the current segmentation and can be written as

EP(f ,w) =
∑

n

[(M1
n − U1

n)2 + (M2
n − U2

n)2], (4)

where M1
n = c1 when fn �= BP and M1

n = −c1 when fn =
BP. Here, M2

n = c2 when fn = B and M2
n = −c2 when

fn �= B, and c1, c2 are positive constants. A penalty is applied

for pixels classified differently by the segmentation and the

shape prior through equation (4).

The last term measures how well the shape prior itself fits

with the image through calculating the entropy of intensity

distributions inside the blood pool, inside the myocardium

and outside the left ventricle. This term can be written as

ES(w, I) = −
∑

i

[pBP(i) log pBP(i)

+ pM(i) log pM(i) + pB(i) log pB(i)],
(5)
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where pBP(i), pM(i) and pB(i) are respectively the probabil-

ity for pixels inside the blood pool, inside the myocardium

and outside the left ventricle to have intensity i and are cal-

culated as pBP(i) = NBP(i)
ABP

, pM(i) = NM(i)
AM

, and pB(i) =
NB(i)

AB
. NBP(i) and ABP are the number of pixels with in-

tensity i and the area inside the blood pool, NM(i) and AM

are those for inside the myocardium, and NB(i) and AB are

those outside the left ventricle. If we denote a heavyside step

function with H(•) and a delta function with δ(•), then

ABP =
∑

n

H(−U1
n),

AM =
∑

n

H(U1
n)H(−U2

n),

AB =
∑

n

H(U2
n),

NBP(i) =
∑

n

H(−U1
n)δ(In − i),

NM(i) =
∑

n

H(U1
n)H(−U2

n)δ(In − i),

NB(i) =
∑

n

H(U2
n)δ(In − i).

(6)

By adding the last term in equation (1), we prevent inaccurate

segmentations from producing inaccurate shape priors.

2.5. Energy Minimization

We use an expectation maximization (EM) style approach to

minimize the energy function presented in equation (1) and

alternately update the GMM and shape parameters while fix-

ing the segmentation (maximization step) and use the GMMs

and the shape prior to facilitate the image segmentation (esti-

mation step).

2.5.1. M(aximization) Step

We start by assigning three Gaussians to each pixel, one which

minimizes the first term in equation (1) when the pixel be-

longs to the blood pool, one when the pixel belongs to the

myocardium and one the background. Differentiating equa-

tion (2) w.r.t. μd, Σd and πd, we get the update equations for

the GMM parameters:

μd =

∑
bn=d In∑
bn=d 1

, Σd =

∑
bn=d(In − μd)2∑

bn=d 1
, πd =

∑
bn=d 1∑

n 1
.

(7)

We use a gradient descent optimization to update the shape

parameters. The update equation for w is

wt+1 = wt − α(∇wEP +∇wES), (8)

where α is the step size for the gradient descent optimization

and wt and wt+1 are the parameters at time t and t + 1 re-

spectively. ∇wEP is calculated by differentiating (4):

∂EP

∂wk
=

∑
n

[2(U1
n −M1

n)
∂U1

n

∂wk
+ 2(U2

n −M2
n)

∂U2
n

∂wk
], (9)

Here, ∇wU1
n and ∇wU2

n can be obtained easily using geom-

etry. ∇wES is calculated by differentiating (5):

∂ES

∂wk
=−

∑
i

[
1

ABP
QBP − 1

AM
QM ]

∂NBP (i)
∂wk

−
∑

i

[
1

AB
QB − 1

AM
QM ]

∂NB(i)
∂wk

+
∑

i

[
NBP (i)
A2

BP

QBP − NM (i)
A2

M

QM ]
∂ABP (i)

∂wk

+
∑

i

[
NB(i)
A2

B

QB − NM (i)
A2

M

QM ]
∂AB(i)

∂wk
,

(10)

where

QBP = (log
NBP (i)
ABP

+ 1)

QM = (log
NM (i)
AM

+ 1)

QB = (log
NB(i)
AB

+ 1)

, (11)

and

∂ABP

∂wk
= −

∑
n

δ(−U1
n)

∂U1
n

∂wk

∂AB

∂wk
=

∑
n

δ(U2
n)

∂U2
n

∂wk

∂NBP (i)
∂wk

= −
∑

n

δ(−U1
n)

∂U1
n

∂wk
δ(In − i)

∂NB(i)
∂wk

=
∑

n

δ(U2
n)

∂U2
n

∂wk
δ(In − i)

. (12)

2.5.2. E(stimation) Step

Since we have three labels, segmentation of the image con-

sists of three stages based on the α-expansion. During each

stage, we follow the graph cuts framework for segmentation

and create a graph with nodes corresponding to pixels and two

additional terminal nodes. The first and third terms in our en-

ergy function are applied to the graph as t-links. The second

term is added as n-links between neighboring nodes. We use

the max-flow [5] algorithm to find the minimum cut on this

graph.

3. EXPERIMENTAL RESULTS

Fig. 1(b) shows the segmentation produced by our proposed

method and Fig. 1(c) the ground truth segmentation for a
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slice of short axis cardiac image with poor boundary contrast

(Fig.1(a)). The ground truth segmentation is produced man-

ually by an expert. As visible from Fig. 1, our segmentation

result is very similar to the ground truth.

4. CONCLUSIONS

The left ventricle in MR images presents many challenges

for automated segmentation including poor contrast at desired

tissue boundaries. Segmentation methods based on informa-

tion from the image alone do not work well in such cases and

additional constraints are necessary.

In this paper, we proposed a novel segmentation method

that incorporates parametric shape priors, which do not re-

quire statistical training, to the graph cuts technique for ro-

bust and efficient segmentations of the left ventricle in car-

diac images. We introduced novel terms accounting for shape

prior/segmentation and shape prior/image fit to the graph cuts

representation. We minimize the energy function through an

EM-style approach and solve for the left ventricle segmenta-

tion and shape parameters calculation iteratively. The term

accounting for shape prior/image fit in the objective function

prevents a vicious cycle of bad segmentation/shape priors. We

demonstrated the effectiveness of our method on real cardiac

images with ground truth segmentations. We are currently

working on quantitative analysis of results from our proposed

method.
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