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ABSTRACT

In this paper, we present a robust method to estimate param-
eters of Hidden Markov Chains (HMC) in order to segment
brain MR images. Indeed, parameter estimation can be very
sensitive to the presence of outliers in the data. We propose to
use the Trimmed Likelihood Estimator (TLE) to extract such
outliers and to accurately estimate the parameters of different
tissue classes in a robust way. Moreover neighborhood in-
formation is included in the model by using Hidden Markov
Chains. Experimental results on 2D synthetic data and on 3D
brain MRI are included to validate this approach.

Index Terms— Image segmentation, HiddenMarkov mod-
els, robustness, Magnetic Resonance Imaging

1. INTRODUCTION

Segmentation is an important step for quantitative analysis of
3D brain images. Manual tracing of cerebral structures in MR
images by a human expert is a time-consuming process and it
is prone to intra- and inter-observer variability, which deteri-
orates the significance of the resulting segmentation analysis.
Due to issues such as partial volume effects, noise or acqui-
sition artifacts, segmenting brain MRI remains a challenging
task. Furthermore the presence of pathological abnormalities
(such as tumors or lesions) can bias parameter estimation.
In this paper, we present a robust method to estimate pa-

rameters to segment brainMR images using the HiddenMarkov
Chain (HMC) model. For this aim, we use the Trimmed Like-
lihood Estimator (TLE) to extract outliers and to estimate the
parameters of the different classes in a robust way.
The paper is organized as follows: next section introduces

the Trimmed Likelihood Estimator (TLE) and the FAST-TLE
algorithm. In section 3, we present how this robust estima-
tor can be used to estimate HMC parameters in the presence
of outliers in the data. In section 4, results obtained on 2D
synthetic images and on 3D brain MRI are shown. Finally in
section 5, conclusions are drawn and future developments are
suggested.
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2. TRIMMED LIKELIHOOD ESTIMATOR

The Trimmed Likelihood Estimator (TLE) was introduced by
Neykov and Neytchev [1] and developed to estimate mixture
of multivariate normals and generalized linear models in a
robust way [2, 3]. The optimization scheme used to compute
this estimator derives from the optimization scheme of the
Least Trimmed Squares (LTS) estimators of Rousseeuw and
Leroy [4]. This algorithm was used to segment brain MRI
by Aı̈t-Ali in the frame of gaussian mixtures [5]. The main
idea lies in finding h observations from N samples for which
the likelihood is maximum and thus in removing the N − h

observations whose values would be highly unlikely to occur
if the fitted model was true. We will aply this estimator to
estimate parameters in a Hidden Markov Chain framework.

2.1. Trimmed Likelihood Estimator

Let us considerN i.i.d observations yn ∈ R
q for n = 1, . . . , N

with probability density f(y; θ) depending on an unknown
parameter θ ∈ Θp ⊂ R

p. The Trimmed Likelihood Estimator
(TLE) [6] is defined as:

θ̂TLE = arg min
θ∈Θp

h∑

n=1

ψ(yν(n); θ) (1)

where for a fixed θ, ψ(yν(1); θ) ≤ ψ(yν(2); θ) ≤ . . . ≤
ψ(yν(N); θ) and ψ(yn; θ) = − log f(yn; θ). Furthermore ν =
(ν(1), . . . , ν(N)) denotes the corresponding permutation of
the indices, which depends on θ and h is the trimming pa-
rameter corresponding to the amount of values including in
parameter estimation. This leads to:

θ̂TLE = arg max
θ∈Θp

h∏

i=1

f(yν(i); θ) (2)

General conditions for the existence of a solution of (Eq. 1)
are proved in [7]. Convergence and asymptotic properties are
studied in [8, 9].
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2.2. FAST-TLE algorithm

The FAST-TLE algorithmwas developed in [10]. It can be de-
scribed as follows: given the subsetHold = {yj1 , . . . , yjN

} ⊂
{y1, . . . , yN},

• Compute θ̂old := MLE (Maximum Likelihood Esti-
mator) based onHold using Eq. 1.

• Define Qold =
∑k

i=1 ψ(yji
, θ̂old).

• Sort ψ(yi, θ̂
old) for i = 1, . . . , N in ascending order:

ψ(yν(i), θ̂
old) ≤ ψ(yν(i+1), θ̂

old) and get the permuta-
tion ν = (ν(1), . . . , ν(n)).

• Define Hnew = {yν(1), . . . , yν(N)}.

• Compute θ̂new := MLE based on Hnew using Eq. 1.

• Define Qnew =
∑k

i=1 ψ(yν(i), θ̂
new).

We propose to adapt this algorithm to the estimation of Hid-
den Markov Chain parameters in next section.

3. ROBUST HIDDEN MARKOV CHAIN
SEGMENTATION

3.1. Hidden Markov Chain

To segment Brain MRI, we propose to use Hidden Markov
Chains (HMC) by using a 3D Hilbert-Peano scan of the data
cube [11]. HMC have been widely used to segment 2D im-
ages [12]. The interest of Markov Chain methods for image
segmentation compared to 3DMarkov Random Fields (MRF)
models is that being based on 1D modeling, they result in
lower computing costs. The first step of segmentation algo-
rithms based on HMC consists in transforming the image into
a vector. Once all the processing has been carried out on the
vector, the inverse transformation is applied on the segmented
chain to obtain the final segmented image.
Let us now consider two sequences of random variables

X = (Xn)n∈S the hidden process, and Y = (Yn)n∈S the
observed one, with S the finite set corresponding to the N
voxels of the image. Each Xn takes its value in a finite set of
K classes Ω = {ω1, . . . , ωK} and each Yn takes its value
in R. X is a Markov Chain if P (Xn+1 = ωkn+1

|Xn =
ωkn

, . . . , X1 = ωk1
) = P (Xn+1 = ωkn+1

|Xn = ωkn
).

Thus X will be determined by the initial distribution πk =
P (X1 = ωk) and the transition matrix an

kl = P (Xn+1 =
ωl|Xn = ωk). We assume the homogeneity of the Markov
Chain which means that the transition matrix is independent
of the location n: an

kl = akl, for 1 ≤ n < N . The dependency
graph of a HMC is presented in Fig. 1.
In the case of brain MRI segmentation, each Xn takes its

value in a set of K = 3 classes Ω = {WM,GM,CSF},
whereWM ,GM and CSF correspond respectively to white
matter, gray matter and cerebrospinal fluid. The likelihood

x x xn n+1n−1

yn+1ynyn−1

Fig. 1. Dependency graph of Hidden Markov Chain

fk(yn, θ) = P (Yn = yn|Xn = ωk) of the observation yn

conditionnaly to Xn = ωk is assumed to be a Gaussian den-
sity with mean μ = (μ1, . . . , μK), variance σ2 = (σ2

1 , . . . , σ
2
K)

and θ = (μ, σ2). One of the interests of Hidden Markov
Chains is the possibility of computing exactly the posterior
marginals at each location. To obtain a labelling x̂ of the im-
age, we use the MPM (Mode of Posterior Marginals) estima-
tor [13]:

x̂n = arg max
ωk∈Ω

P (Xn = ωk|Y = y) (3)

= arg max
ωk∈Ω

αn(k)βn(k) (4)

with αn(k) = P (Xn = ωk, Y1, . . . , Yn) forward probability
and βn(k) = P (Yn+1, . . . , YN |Xn = ωk) backward proba-
bility [14]. These probabilities can be computed recursively.
This recursive computation is detailed in Sec 3.2 in the robust
case.

3.2. Robust parameter estimation

Parameter estimation using the EM algorithm [15] can be sen-
sitive to outliers in the data. To estimate parameters in a ro-
bust way, we thus adapt the FAST-TLE algorithm presented
in Sec. 2.2 to HMC. This leads to [14]:

1. Compute θ̂(p−1) := MLE using EM, based on the
whole dataset.

2. Sort residus rn = − log f(yn; θ̂(p−1)) for n = 1, . . . , N

f(yn; θ̂(p−1)) =
∑

ωk

P (Yn = l,Xn = ωk, θ̂
(p−1))

=
∑

ωk

P (Xn = ωk)fk(yn, θ̂
(p−1))

3. Define H(p) = {yν(1), ..., yν(h)} the subset containing
the h vectors with the lowest residus for θ̂(p−1).

4. Compute θ̂p := MLE using EM, based on H(p). We
assign the likelihood of data considered as outliers to
one, i.e. fxn

(yn) = 1. On the location where the data
is considered as an outlier, only prior distribution takes
place in the labelling process. Calculation of the differ-
ent probabilities becomes:
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• Forward probabilities:
– α1(k) = πkfk(y1, θ̂

p)

– αn(k) =
∑K

l=1 αn−1(l)alkfk(yn, θ̂
p) with

fk(yn, θ̂
p) = 1 if yn is considered as an out-

lier.
• Backward probabilities:

– βN (k) = 1

– βn(k) =
∑K

l=1 βn+1(l)aklfl(yn+1, θ̂
p) with

fl(yn+1, θ̂
p) = 1 if yn+1 is considered as an

outlier.
• a posteriori joint probabilities:
ξn(i, j) =

αn−1(j)ajifi(yn,θ̂p)βn(i)P
k

αn(k)

• a posteriori marginal probabilities:
γn(i) = αn(i)βn(i)P

j
αN (j)

• μi =
P

n1
γn1

(i)yn1P
n1

γn1
(i) with yn1

belonging to the

subset H(p).

• σi =
P

n1
γn1

(i)(yn1
−μi)(yn1

−μi)
t

P
n1

γn1
(i) with yn1

be-

longing to the subset H(p).

5. Back to step 2 until convergence.

We then apply this method to the segmentation of 2D syn-
thetic images and 3D brain MR images.

4. VALIDATION

4.1. Synthetic 2D images

To validate this approach, tests have been carried out on a
64 × 64 synthetic image composed of 3 classes corrupted
by Gaussian noise which parameters are described in Tab. 1.
Moreover intensity value of 30 pixels of class 2 has been set
to 200. As the mean of class 2 is 100, these pixels will sim-
ulate outliers in the data. We test our robust HMC approach
for different values of the trimming parameter h.

Class Mean μ Variance σ2

Class 1 75 9
Class 2 100 9
Class 3 125 9

Table 1. Parameters of the synthetic image.

When parameter estimation is not robust (h = 100), vari-
ance of class 3 is very high: indeed “outliers” pixels are con-
sidered to belong to class 3. As a consequence, the border
between class 2 and 3 is not well segmented (Fig. 2 c). When
h decreases, i.e. when the number of pixels considered as out-
liers and thus not included in parameter estimation increases,
variance of class 3 decreases. If h is too low, the variance

h μ1 σ2
1 μ2 σ2

2 μ3 σ2
3

100 75 8.47 100.08 8.95 126.21 182.37
99 75.08 7.96 100.08 9.08 124.95 8.89
95 75.86 5.40 100.08 9.08 124.95 8.89

Table 2. Results obtained on the synthetic image. Parameters
estimation for different values of h are reported.

(a) (b)

(c) (d) (e)

Fig. 2. Results obtained on a synthetic 2D image. (a) corre-
sponds to the noisy image and (b) to the ground truth. (c) and
(d) correspond respectively to the results obtained using the
robust HMC segmentation with value of h respectively 100
and 99. In (e) outliers obtained with h = 99 are shown in
white.

of class 1 decreases and mean of class 1 increases slightly:
the pixels with the lowest intensities are considered to be the
farest from the model and thus rejected. If the outliers corre-
spond to potential lesions or pathological abnormalities, they
can be extracted in order to be post-processed (Fig. 2 f).

4.2. Tests on the Brainweb database

We applied the robust HMC model presented in previous sec-
tion to brain MRI segmentation. This method has been tested
on the Brainweb database1 [16] which offers a large amount
of different phantoms of MR brain images with varying noise
levels from 0% to 9% and varying levels of non-uniformities
from 0% to 40%. From these phantoms, the tissue classi-
fication in white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF) is known. To evaluate the performance
of our algorithm, we use the Kappa index (KI):

KI = 2
SEG

⋂
GT

SEG+GT
(5)

where GT stands for the ground truth and SEG for the seg-
mentation obtained. The method was tested with different
values of the trimming parameter h. Results obtained are pre-
sented in Tab. 3 and in Fig. 3 .

1http://www.bic.mni.mcgill.ca/brainweb/
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9% noise
0% inhomogeneity 20% inhomogeneity

h WM GM CSF WM GM CSF
100 91.93 89.67 90.41 90.52 88.49 89.96
99 91.93 89.76 90.58 90.52 88.57 90.12
95 91.93 89.33 89.86 90.52 88.07 89.35

Table 3. Results obtained on two Brainweb images with 9%
of noise and 0 and 20% inhomogeneity. Kappa index (in %) is
reported for white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF) for different values of h.

(a) (b)

Fig. 3. Results obtained on a Brainweb image. (a) corre-
sponds to the noisy image and (b) to the segmentation with
h = 99%.

For white matter, robust estimation does not improve the
results. On the other hand, gray matter and cerebrospinal fluid
results are slightly improved. Indeed, for a trimming param-
eter h of 99%, Kappa index is higher than for a value of h
of 100% (which corresponds to a classical EM estimation).
However, the main drawback of this method is that parameter
h corresponding to the percentage of pixels used to estimate
parameters has to be set to a value neither too high to reject all
the outliers, nor too low in order to not lose information. In-
deed for a value of h of h = 95%, Kappa index is lower than
in the non-robust case. In practice we can have an a priori on
the size of lesions and on the percentage of outliers, thus the
trimming parameter h can be chosen more precisely.

5. CONCLUSION AND OUTLOOK

In this paper, we have described and validated a robust method
for tissue classification of brain MR images. We use HMC to
include neighborhood information in the model. To estimate
model parameter in a robust way, the Trimmed Likelihood
Estimator was used. This method has been validated on 2D
synthetic images and 3D brain phantoms. Future work will
consist in applying this method to lesion detection.
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