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ABSTRACT

Diffusion tensor imaging (DTI) is known to be promising 
for providing anatomical information about white-matter 
fiber bundles that cannot be obtained by other non-invasive 
in vivo imaging methods. However, its application is limited 
because of its low signal-to-noise ratio and significant 
imaging artifacts. To improve the accuracy of tissue 
structural and architectural characterization with diffusion 
tensor imaging 4D wavelet denoising technique is used to 
improve the signal to noise ratio (SNR) of diffusion tensor 
images. To evaluate the proposed method, a high SNR data 
set is built by repeating and averaging the data acquisition 
several times and is compared to the denoised data. Our 
results revealed that wavelets would effectively reduce the 
noise in DTI data with less blurring of tissue types, 
especially in the white matter. It would suggest that by 
using the 4D wavelet noise suppression, one could decrease 
the acquisition time and still have an acceptable SNR. 

 
Index Terms— Diffusion Tensor Imaging, Fiber Tracking, 
Noise Suppression, Wavelets

1. INTRODUCTION 
 
Diffusion tensor imaging (DTI) is a growing application of 
magnetic resonance imaging (MRI) technique that allows 
the in vivo estimation of water diffusion. Estimating the 
local diffusion of water provides unique information about 
the structure of brain bundles. Because of this unique 
ability,  DTI has evolved into a main technique for 
noninvasive evaluation of white matter structure and is used 
in a variety of applications, from diagnosis of disease 
conditions such as schizophrenia, multiple sclerosis, stroke, 
and Alzheimer to microstructural characteristics of the 
brain. 

In the human brain which is an anisotropic environment 
the diffusion is characterized by a symmetric tensor D [1]. 
This tensor is called diffusion tensor and contains six 
independent coefficients which describe the mobility of 
water molecules along each direction and correlation 

between these directions [2,1]. In DTI, these diffusion 
coefficients of water molecules are measured using 
diffusion-weighted MR measurements in at least six 
noncolinear directions. 

One of the most promising applications of DTI is 
reconstructing the pathways of white matter structures in the 
brain, known as Tractography. Considering that, the axonal 
fibers are myelinated and consequently the diffusion in the 
direction of fibers is faster than in the perpendicular 
direction [2], dominant direction of water diffusion at each 
voxel represents the local direction of the fibers. So the 
eigenvector of diffusion tensor D associated with its largest 
eigenvalue (principal diffusivity) defines the tissues’ local 
fiber-tract (principal direction). Based on this fact, 
tractography algorithms connect image voxels using the 
directional similarity of their principal directions [3]. 

Despite its promising applications, typical in vivo 
diffusion-weighted MR data suffers from low signal-to-
noise ratio and harmful effects of experimental noise and 
imaging artifacts due to effects such as magnetic field 
inhomogeneities and eddy currents which make DTI highly 
sensitive to noise. 

At low SNRs the eigenvalues of the diffusion tensor D 
diverge rapidly from their original values. Pierpaoli et al. 
[4] using a monte carlo simulation show that the 
background noise generates bias in the eigenvalues of 
diffusion tensors. They show that the sample mean of the 
largest sorted eigenvalues is always larger than its true value 
and the smallest one is smaller than its true value. This 
would result in a significant overestimation in of the degree 
of diffusion anisotropy within each voxel. This will cause 
cumulative errors which propagate to parameters calculated 
from the eigenvectors such as diffusion and tractography 
maps.  

To obtain reliable tractography maps, it is necessary to 
have data with a high SNR at small voxel sizes. To achieve 
an appropriate SNR, one solution is multiple data 
acquisition and signal averages but this has the obvious 
drawback of increasing the total scanning time of the study 
which is undesirable. Due to the rigorousness of noise 
problem, one should trade off between the number of 
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averages (SNR), quality of maps (Voxel size and number of 
slices), and the scanning time. In this paper, it is shown that 
using the noise suppression technique, one can reduce the 
severity of noise level in the DTI data and decrease its effect 
on tractography maps. 

Different postprocessing algorithms have been employed 
by other investigators to improve the SNR of DTI data. 
Parker et al. [5] use a nonlinear diffusion filtering technique 
to reduce noise and show that applying filtering to 
calculated images of fractional anisotropy, fails in reducing 
the errors. In this paper, we apply the proposed denoising 
method to the diffusion-weighted MR images. Ding et al. 
[6] use anisotropic smoothing to reduce the noise in DTI. 

The wavelet transform is an analysis tool that projects 
signals onto orthogonal and semi-orthogonal bases. Using 
wavelet transform, the energy of a signal is partitioned 
through a wavelet expansion to express simultaneous time 
(space) and frequency local information.  Wavelets, due to 
their known advantages such as localization in space and 
frequency, have shown their ability for noise suppression. 
Wavelet methods have been previously used to enhance 
specific features and reduce noise in medical images [7]-[8] 
[9]. Considering these facts, compared to other methods 
previously used to smooth DTI images [5]-[6], wavelet-
based noise reduction offers unique theoretical advantages 
for identifying a signal from noise; this was our intial 
motivation for using wavelet s for denoising. 

In this research, we apply a 4D wavelet signal expansion 
along with the well-established wavelet shrinkage [10] for 
suppressing the noise. The proposed denoising method is 
applied to the diffusion-weighted MR images used to 
calculate the diffusion tensor. Our results reveal that 
applying the proposed method to raw data, leads to 
reduction in the propagation of noise related errors in 
calculation of diffusion tensors and DTI maps. 

We evaluate the denoising method by analyzing a 
normal volunteer’s DTI data and comparing it to the high 
SNR data obtained by several acquisitions and averaging of 
the DTI data. We compare the FA maps derived from high 
SNR data to that of denoised data. A comparison is also 
made by comparing the tractographs of the Fornix area 
(which is used as the standard index) of these datasets. 
 
 

2. METHODS AND MATERIALS 
 
2.1. Diffusion Data 
 
Diffusion weighted images were acquired from a healthy 
human subject using a 3T GE MRI scanner (General 
Electric, Milwaukee, WI). Images were scanned using 25 
noncolinear weighting directions and a single shot echo 
planar imaging (EPI) sequence with b value of 1000 
sec/mm2. Each volume covers a 240 mm x 240 mm field of 
view with 0.9375 mm x 0.9375 mm in-plane resolution and 

3 mm slice thickness. To generate a high SNR data, we 
repeated the above experiment 5 times for each subject and 
averaged the acquired data. 

 
2.2. Wavelet Denoising 

Step 1: 4D wavelet transform is applied to the noisy data. 
The wavelet basis may be chosen based on various factors 
including computational burden, and ability to compress the 
L2 energy of the signal into a very few, very large 
coefficients. In this study, different wavelet coefficients 
were examined and coifelet3 wavelet which revealed the 
best performance was used. 
Step 2: Wavelet coefficients underwent a soft thresholding 
operation [10]-[12]. A threshold ( ) was determined 
according to the sampling number (n) and local statistics of 
the wavelet coefficients (Eq. 1). Then, a “soft thresholding” 
process reduced the amplitudes of the coefficients by . (Eq. 
2)  
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Step 3: The shrunken set of coefficients obtained from step 
2 were then padded with zeros to produce a legitimate 
wavelet transform. The result was inverted to obtain the 
estimate of the actual signal.  

In this manner, the noise is largely suppressed while 
features in the original signal remain sharp after denoising 
in contrast with traditional linear methods of smoothing 
which trade-off noise suppression against a broadening of 
the signal. 

2.3. Fiber Tracking 
 

DTI provides a unique tool for investigating brain 
structures and assessing axonal fiber architectures in vivo. A 
conventional fiber-tracking algorithm is based on the Fiber 
Assignment by Continuous Tracking (FACT) approach, by 
which tracking is performed using a continuous coordinate 
system rather than a discrete voxel-based matrix grid.  

First, for each voxel, three eigenvalues 1, 2, and 3, 
which correspond to the three eigenvectors of the diffusion 
tensor at that voxel are calculated. These eigenvalues 
represent the magnitudes of diffusivity in three orthogonal 
directions. Based on these three diffusivities and the mean 
diffusivity, , (Eq 3) the fractional anisotropy (FA) is 
calculated using Eq 4 [13]. 
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FA value represents the degree of anisotropic diffusivity at 
each voxel. The fiber tracking starts at the center of each 
voxel having a fractional anisotropy (FA) value greater than 
a user-defined threshold (0.2 in our experiment), and 
proceeds along the principal eigenvector direction. At the 
point where the track intercepts the voxel’s boundary, the 
tracking direction changes to that of its neighbor. Applying 
this tactic iteratively, a continuous fiber trajectory is 
obtained. Tracking is stopped at voxels where FA is lower 
than the threshold (FA threshold) or the angle between the 
two eigenvectors is greater than a user-defined threshold 
(angle threshold). DtiStudio software package is used in this 
work for the implementation of this method [13]. 
 
 

3. EXPERIMENTAL RESULTS 
 

To evaluate the denoising method, a high SNR dataset is 
built by repeating the data acquisition 5 times and averaging 
the results. This high SNR dataset is used as the gold 
standard. Wavelet denoising and Gaussian filtering [14] 
were applied to diffusion-weighted images. FA maps were 
generated using the denoised DWIs and high SNR DWIs 
and effects of the denoising methods on the FA maps were 
evaluated. The error at each voxel was quantified as the root 
mean square error between the high SNR FA map and the 
denoised data FA map. The performance of the methods 
was evaluated by computing the Root Mean Square Error 
(RMSE) in the brain tissues and white matter alone. The 
estimated values for the brain tissues are compared in Fig. 1. 
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Fig. 1. The effect of denoising on FA map of the whole 

brain. 

Note that the wavelet denoising considerably decreases 
the error. Since in the DTI tractography we are more 
interested in regions with anisotropic diffusion, we also 
made comparison of the FA values in the white matter.  The 
estimated errors in the white matter are plotted in Fig. 2. It 
can be seen that wavelet denoising again generates the 
lowest error.  

The effect of the denoising methods on the tracking of 
the fibers is also evaluated. The Fornix fibers have been 
chosen as an index. For reconstruction of the Fornix, we 
placed a single ROI at the level of the column of the Fornix 
as it becomes vertical in its most anterior segment. The 3D 
reconstructed fibers after denoising (Fig. 3) demonstrate 
white matter connections between the hippocampal region 
and the septal region and the mamillary bodies. The 
reconstructions also include fibers of the mamillo-thalamic 
tract. As can be seen without noise suppression, the fornix 
fibers could not be reconstructed properly. The result of the 
Gaussian filtering was very similar to that in Fig 4.a and is 
not shown due to page limitations. 
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Fig. 2. The effect of denoising on FA map of White Matter. 
 
 

4. DISCUSSION AND CONCLUSION 
 

In this paper, wavelet shrinkage was investigated for 
suppressing the noise in diffusion tensor image data. To 
evaluate the effect of the wavelet denoising on in-vivo DTI 
data, diffusion weighted images were acquired from a 
healthy human subject. FA maps of the whole brain and 
white matter was compared to that of our gold standard 
which was generated by repeating the acquisition several 
times. The effect of wavelet denoising on tractography maps 
was also investigated. Fiber tracts were estimated using the 
dominant eigenvector field obtained from the diffusion 
tensor image. According to our results, wavelet denoising 
would reduce the noise of the FA maps more effectively 
compared to the Gaussian filtering. However, in the white 
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matter which is pretty homeogenious, the difference is less 
compared to the whole brain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Reconstructed fibers (Fornix): a) without 
denoising b) with wavelet denoising. 

 
An interesting point is that although the improvement in 

the FA maps is not very large but an obvious improvement 
in the fiber tract maps is resulted. Errors in the fiber tract 
maps are due to the propagation of errors induced by noise 
and confounding effects and are very sensitive to noise. 
Therefore, a small improvement in the FA maps quality will 
often lead to a considerable improvement in the fiber tracts. 
Results of white matter fiber tract mapping after wavelet 
denoising revealed that the fiber tracts are quite accurate 
when validate visually and correspond well with known 
anatomical structures such as the Fornix. It seems that using 
wavelet denoising, it is possible to decrease the acquisition 
time by avoiding multiple acquisitions and still be able to 
reconstruct acceptable fiber tracts.  
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