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ABSTRACT
Monitoring the dynamics of networks in the brain is of central im-
portance in normal and disease states. Current methods of detect-
ing networks in the recorded EEG such as correlation and coher-
ence only explore linear dependencies, which may be unsatisfactory.
We propose applying mutual information as an alternative metric for
assessing possible nonlinear statistical dependencies between EEG
channels. However, EEG data are complicated by the fact that data
are inherently non-stationary and also the brain may not work on the
task continually. To address these concerns, we propose a novel EEG
segmentation method based on the temporal dynamics of the cross-
spectra of computed Independent Components. A real case study in
Parkinson’s disease and further group analysis employing ANOVA
demonstrate different brain connectivity between tasks and between
subject groups and also a plausible mechanism for the beneficial ef-
fects of medication used in this disease. The proposed method ap-
pears to be a promising approach for EEG analysis and warrants
further study.

Index Terms— EEG, Cross-Spectrogram, Mutual Information,
Parkinson’s Disease, Relevance Network.

1. INTRODUCTION

Connectivity between brain regions is being increasingly recognized
as important for normal brain functioning, and may be impaired in
some neurological diseases such as Parkinson’s disease (PD).A vari-
ety of electrophysiological techniques have been available for exam-
ining connectivity such as electroencephalogram (EEG). Both linear
and non-linear measures have been proposed to infer the functional
connectivity between and within brain hemispheres from the EEG.

Several methods such as coherence and correlation have been
applied to the study of cortical connections [1, 2]. However, these
methods consider only linear dependencies. In contrast, mutual in-
formation (MI) measures both the linear and non-linear statistical
dependencies between time series and thus can be used to find the
dynamical coupling or information transmission in the brain. Its
value is maximized when the two time series are the same and is
zero when they are completely independent.

The aim of this study is to investigate the functional connectiv-
ity of the brain of PD patients and normal subjects by estimating
the MI in multi-channel EEG. In order to overcome the issues that
only a small fraction of the EEG recording is task-related and the
non-stationary nature of the EEG data, we propose a novel segmen-
tation method of the EEG based on the temporal dynamics of the
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cross-spectrogram of the Independent Components (ICs). The net-
work differences between tasks and between groups are analyzed
statistically.

Previously, MI has been applied to Alzheimer’s [3], Schizophrenic
[4], and Odor Stimulation [5] data to assess information transmission
between different parts of the brain and it’s connectivity. However,
to our knowledge, this is the first time that anyone has first seg-
mented the data based on ICs or applied MI to PD data in order to
gain insight into the difficulty that PD subjects face when performing
simultaneous movements.

The paper is organized as follows: the methods are introduced in
section 2. Section 3 presents the EEG experiment and summarizes
the results in a real case study of PD. Section 4 concludes the paper.

2. METHODS

2.1. Preprocessing

Fig. 1 presents the flowchart of the steps of EEG preprocessing. The
data are band-pass filtered to focus on the frequency ranges of clin-
ical and physiological interests, typically 0.5-55Hz for clinical EEG
[6]. EEG data are frequently contaminated with artifacts such as eye
movements, eye blinks, cardiac signals, and muscle noise. Indepen-
dent Component Analysis (ICA) can be used to isolate these artifacts
because they are temporally independent from ongoing brain activ-
ity.

Since only a small percent of the entire EEG recording is task-
related and the inherit non-stationary nature of EEG data [7], EEG
segmentation based on the cross-spectrogram of the ICA compo-
nents is adapted in order to address such concerns. The use of ICs
requires further comment. If the derived components were truly in-
dependent, then the cross-spectrum would not be significant. How-
ever, in real data many of the assumptions of ICA are violated. The
data are not stationary, and the time courses are not spatially white.
By using infomax ICA, which does not incorporate time delays, the
derived components will be maximally independent at zero lag. As
such, it will deal with the problem of volume conduction – where a
deep electrical source may impart common electrical activity to two
or more electrodes. However, by examining the ICs within a short
moving window, the non-stationary nature of the EEG will be ex-
plored, and significant dependencies between ICs become apparent
[13].

The ICs are thus transformed into time-frequency domain and
the cross-spectrogram is computed. A short (3s) time window
shifted by 0.5s is applied to the frequency content to obtain the
localized time information. The frequency content is computed
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Fig. 1. Flowchart of EEG preprocessing

by cross power spectral density using the Welch’s averaged, mod-
ified periodogram [8] method of spectral estimation. If x(t) and
y(t) are signals normalized to zero mean and unit variance, their
cross-correlation is:

Rxy (τ) =
1

N − τ

N−τ∑

k=1

x (k + τ) y (k) (1)

The cross spectral density function is a Fourier transform of the
cross-correlation function that indicates the relationship between the
two signals.

S(f) =

∫ ∞

−∞
Rxy(t)e−j2πftdt (2)

Based on the cross-spectrogram, we can identify the noisy and the
task-related segments.

2.2. Mutual Information based Relevance Network

The relevance network takes large data sets of experimental data and
and graphically depicts the result of pair-wise mutual information.
Mutual information (MI) measures the mutual dependence or infor-
mation gained about one signal from another. Given two random
variables X and Y , the amount of uncertainty in X that is reduced
by knowing Y is the mutual information,

I(X, Y ) = H(X)−H(X|Y ) = H(X)+H(Y )−H(X, Y ), (3)

which can also be written as

I(X, Y ) =
∑

x,y

PXY (x, y)log2
PXY (x, y)

PX(x)PY (y)
, (4)

where H(X) means the entropy of X , H(X|Y ) means the condi-
tional entropy of X when given Y , H(X, Y ) is the joint entropy
that is the joint uncertainty in X and Y, and PXY (x, y) is the joint
probability density for the measurements of X and Y that produce
the values x and y.

MI is also the amount of information about X that Y contains.
It is a symmetric function meaning I(X, Y ) = I(Y, X). If X is
independent of Y , then PXY (x, y) factorizes to PX(x)PY (y) and
the MI is zero. On the contrary, the higher the MI between two sig-
nals, the more information they contain about each other. Hence,

Fig. 2. Experiment design of the squeeze, button push, and simulta-
neous movement task

the higher MI, the more likely that the two signals are biologically
related. MI is estimated from a finite number of samples, the prob-
ability densities, PX(x) and PXY (x, y), are approximated by his-
togram. The detailed derivation and background of information the-
ory can be found in [9].

2.3. Statistical Analysis

The normality of the distribution of the MI value is tested by the
Kolmogorov-Smirnov (KS) test. Within group differences of each
MI value are analyzed using one way analysis of variance (ANOVA)
with a task factor. Across group differences of each MI value are
analyzed using ANOVA with a group/ subject factor. Because we
are more interested in the significant connections with greater mag-
nitude, a threshold is further applied. The threshold is chosen from
the distribution of the permutation result [10] of the MI values.

3. EXPERIMENT AND RESULTS

3.1. Subjects and Experiment Design

Seven PD and six age-matched control subjects volunteered to par-
ticipate in the study. Subjects were asked to hold a custom-built
rubber squeeze bulb in their right hand. They were instructed to
control an “inflatable” ring as shown as the horizontal bar in Fig. 2
by squeezing the bulb. The ring must move through an undulating
tunnel without touching the sides. Three five-minute trials were per-
formed by normal subjects (N), PD before medication (Ppre), and
PD 1hr after L-dopa medication (Ppost). During one trial, subjects
were asked to squeeze the bulb (SQ) with right hand alone. In an-
other trial, they were asked to press a mouse button (BU) with their
left hand alone when they observed a color changes in the ring.
Lastly, the subjects were required to do both movements simulta-
neously (BO) as seen in Fig. 2.

3.2. EEG Data Preprocessing

The 19-channel EEG data are sampled at 128Hz and bandpass filter
between 0.5∼55Hz. The artifactual ICA components are removed
from the data by visual inspection. Two operations are done based on
the cross-spectrogram of the ICA components: noisy EEG segment
removal and task-related EEG segmentation.

Noisy EEG Segment Removal: The data in the frequency range
of 45∼55Hz do not contain information of clinical and physiological
interest. Thus, activity in the cross-spectrogram of the ICA compo-
nents between 45∼55Hz was a good marker of transient broadband
artifacts that were not eliminated by ICA Noise Removal step (Fig.
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Fig. 3. Cross-spectrogram and EEG

3). Thresholding is applied to eliminate EEG segments with greater
power in this frequency range and exclude them from further analy-
sis.

Task-Related EEG Segmentation: The segmentation and net-
work analysis are based on three frequency bands: 5∼8Hz (Delta
band), 8∼12Hz (Theta band), 12∼30Hz (Beta band) as these have
in the past been implicated with different neurological processes [6].
Since not all the cross-spectrogram of the ICA component pairs are
task-related, only the ones that are modulated with the behavioral
data are used. The squeezing task movement is composed of 2 si-
nusoids with period of 10 and 18 seconds. The button was pressed
every 20 seconds. The simultaneous movement thus contains both
the squeeze and button push information.

Because the pairs that are modulated with the behavioral data
all have a common task-related feature, they are integrated to en-
hance the signal-to-noise for segmentation. As an example, both
the autocorrelation of the behavioral data and the autocorrelation
of the integrated cross-spectrogram ICA component pairs contain
peaks around every 10 and 18 seconds as seen in Fig. 4(b) and 4(d),
yet there are some discrepancies between their actual time courses
in Fig. 4(a) and 4(c). In general the behavioral data cannot reflect
exactly how the brain functionally relates to the task, although in
this case, we can use the smooth behavioral performance as a rough
check on the validity of the proposed segmentation approach. The
discrepancies include the actual magnitude of the correlation and
delays in information transmission. EEG segmentation is thus based
on the actual cross-spectrogram of the ICA pairs directly from the
brain for more accurate segmentation. Depending on the features of
each dataset, approximately five pairs are chosen for each task. The
EEG segments that have higher power indicate that they are highly
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Fig. 4. Example of the original and autocorrelation of the squeeze
behavioral data and the summ of all cross-spectrogram ICA compo-
nent pairs integrated between 8∼12Hz

correlated for the particular task they are performing. We therefore
threshold the EEG data every 20 second to obtain the task-related
segments. Only segments that are above the mean plus the mean
absolute deviation are selected for further analysis.

3.3. Mutual Information based Relevance Network Analysis

The data are broken into 4 second epochs for MI computation in or-
der to increase the sample size, and enhance the stationarity and con-
sistency of the MI estimates. A two-tailed P value from the ANOVA
(p < 0.001) is considered significant for the within group analysis
(SQ vs. BO) and the same goes for the across group analysis (N vs.
Ppre vs. Ppost). The permutation test is used in conjunction with
ANOVA test to select relevant features for the MI based relevance
network. We have taken the maximum value of the permutation dis-
tribution as our threshold to select the significant connections for the
interpretation.

We first examine the results for the within group analysis. As
an illustrative example, the graphical results for the within group at
the frequency range of 5 to 8 Hz are presented in Fig. 5. The details
of the comparison for the PD group after medication are summa-
rized in Table 1. The results suggest that PD subjects are unable
to independently recruit different areas while performing simultane-
ous tasks; they attempt to recruit a single coherent widespread net-
work. Additionally, medication appears to partially normalize this
deficiency, consistent with prior studies investigating corticomuscu-
lar coherence in PD [12].

We also investigate the results for across group analysis. Due
to the space limitation, we only report an illustrative example here.
The results for across group analysis for BO are shown in Fig. 6. We
observe higher MI values in the frontal region of the brain for lower
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Table 1. Ppost 5∼8 Hz: SQ vs. BO
Node # Node # P value SQ mean SQ STD BO mean BO STD

1 3 0.00181 0.18402 0.08481 0.16174 0.06261
3 4 0.00307 0.18680 0.07635 0.16781 0.05615
3 5 0.00210 0.14559 0.07767 0.12510 0.06041
8 13 0.00486 0.12596 0.04397 0.11383 0.04610

N: SQ vs. BO (5~8Hz)

(a) Normal

Ppre: SQ vs. BO (5~8Hz)

(b) PD before medication

Ppost: SQ vs. BO (5~8Hz)

(c) PD after medication

Fig. 5. Mutual information based relevance network for within group
analysis: squeeze (SQ) vs. both (BO). The solid line denotes that
MIs of BO are significantly greater than the ones of SQ. The dotted
line means MIs of SQ are significantly greater than the ones of BO.

and medium frequencies and motor cortex for higher frequencies in
PD.

3.4. Conclusion

This paper proposed a mutual information based relevance network
approach for brain connectivity in EEG data analysis. Since mutual
information measures both the linear and nonlinear dependencies,
it is considered a suitable metric for identifying brain connectivity
between EEG times series. EEG segmentation was applied to the
data in order to extract the task-related EEG segments. A real case
study of Parkinson’s disease yielded promising results, as it is able
to identify different brain network patterns between tasks and be-
tween groups characterized by different factors such as disease and
medication.
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