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Abstract— In this paper, we compare and validate different
probabilistic models of human heart beat intervals for as-
sessment of the electrocardiogram data recorded with varying
conditions in posture and pharmacological autonomic blockade.
The models are validated using the adaptive point process
filtering paradigm and Kolmogorov-Smirnov test. The inverse
Gaussian model was found to achieve the overall best per-
formance in the analysis of autonomic control. We further
improve the model by incorporating the respiratory covariate
measurements and present dynamic respiratory sinus arrhyth-
mia (RSA) analysis. Our results suggest the instantaneous RSA
gain computed from our proposed model as a potential index
of vagal control dynamics.

Index Terms— Heart rate variability, point processes, adap-
tive filters, autoregressive processes.

I. INTRODUCTION

Heart rate (HR) and heart rate variability (HRV) are

important quantitative markers of cardiovascular control, as

regulated by the autonomic nervous system [1]. It has long

been understood that the healthy heart is influenced by

multiple neural and hormonal inputs that result in variations

of duration in the interbeat intervals (R-R intervals). Studying

the R-R intervals is a standard way to analyze the heart

beat dynamics. In the literature, numerous methods have

been proposed for HRV analysis, including point process

analysis [2, 3], frequency-domain analysis [4], and nonlinear

dynamics analysis [8]. In this paper, we investigate different

probabilistic models for the human heart beat interval with

the adaptive point process filtering paradigm [2], utilizing

the electrocardiogram (ECG) and lung volume data from a

previous study [9] under an autonomic blockade assessment

protocol. In addition, we extend the inverse Gaussian model

to take into account the influence of respiration on HRV.

Modeling accuracy is evaluated via goodness-of-fit tests,

and spectral analysis and physiological interpretations are

presented for the reported results.

II. POINT PROCESS PROBABILISTIC MODELS

In this section, we conduct the probabilistic analysis of

heart beat data with the stochastic point process paradigm.

The major advantage of casting the heart beat interval within

the point process framework is to allow the possibility to
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model and evaluate the instantaneous heart rate statistics

at arbitrary fine time resolution. In addition, the continuous

heart beat values (in contrast to the interpolated R-R interval

values) offer the convenience for frequency analysis.

A. Heart Beat Interval
Suppose we are given a set of R-wave events {uj}J

j=1

detected from the ECG, let RRj = uj−uj−1 > 0 denote the

jth R-R interval, or equivalently, the waiting time until the

next R-wave event. By treating the R-wave as discrete events,

we propose different parametric point process probabilistic

models (Table I) in the continuous-time domain.
As an example, assuming history dependence, the waiting

time t− ut until the next R-wave event may be modeled as

the following inverse Gaussian model:

p(t) =
( θ

2πt3

) 1
2

exp
(
− θ(t− ut − μt)2

2θ2(t− ut)

)
(t > ut),

where ut denotes the previous R-wave event occurred before

time t, θ > 0 denotes the shape parameter, and μt denotes

the instantaneous R-R mean that is defined as

μt ≡ μRR(t) = a0 +
p∑

i=1

aiRRt−i. (1)

Here, the mean value is modeled by a univariate p-order au-

toregressive (AR) process, which is assumed (approximately)

to be influenced by the past p R-R values. Similarly, we

can derive the mean and variance of R-R interval for all

probabilistic models, such as the Gaussian, lognormal, and

gamma models (Table I).

B. Instantaneous Indices of HR and HRV
Heart rate is defined as the reciprocal of the R-R intervals.

For RR measured in seconds, r = c(t − ut)−1 (where

c = 60 s/min) is a physiological measurement in beats per

minute (bpm). By the change-of-variables formula, the HR

probability p(r) = p(c(t− ut)−1) is given by

p(r) =
∣∣∣ dt

dr

∣∣∣p(t), (2)

and the mean and the standard deviation of heart rate r can be

derived (see Table I). Essentially, the instantaneous indices

of HR and HRV are characterized by the mean μHR and

standard deviation σHR, respectively (see [2, 3] for details).
It is known from the point process theory [2, 3] that, the

conditional density function (CIF) λ(t) is related to the inter-

event probability p(t) with a one-to-one relationship:

λ(t) =
p(t)

1− ∫ t

ut
p(τ)dτ

. (3)
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TABLE I

COMPARISON OF 4 TWO-PARAMETER PARAMETRIC PROBABILISTIC MODELS FOR THE HEART BEAT R-R INTERVAL AND HEART RATE (HR).

R-R interval model p(t|θ1, θ2) E[t] var[t] HR model p(r|θ1, θ2) Note: c = 60 s/min

Gaussian 1√
2πθ2

exp
“
− (t−θ1)2

2θ2

”
θ1 θ2

c√
2πθ2r2 exp

“
− (cr−1−θ1)2

2θ2

”

invGaussian
“

θ2
2πt3

” 1
2

exp
“
− θ2(t−θ1)2

2θ2
1t

”
θ1 θ3

1/θ2

“
θ∗2
2πr

” 1
2

exp
“
− θ∗2 (1−θ∗1r)2

2θ∗12r

”
θ∗1 = θ1/c, θ∗2 = θ2/c

lognormal 1√
2πθ2t

exp
“
− (log(t)−θ1)2

2θ2

”
eθ1+θ2/2 e2θ1+θ2 (eθ2 − 1) 1√

2πθ2r
exp

“
− (log(cr−1)−θ1)2

2θ2

”

gamma
θ

θ1
2

Γ(tθ−1
1 )

exp(−θ2t) θ1/θ2 θ1/θ2
2

θ∗2
θ1

Γ(θ1)rθ1+1 exp(−θ∗2/r) θ∗2 = cθ2

The estimated CIF can be used to evaluate the goodness-of-

fit of the probabilistic model for the heart beat dynamics.

C. Adaptive Point Process Filtering

Let θ denote the unknown parameters in the parametric

probabilistic model, we can use recursively estimate them

via adaptive point process filtering [2]:

θk|k−1 = θk−1|k−1 (4)

Pk|k−1 = Pk−1|k−1 + W (5)

θk|k = θk|k−1 + Pk|k−1(∇ log λk)[nk − λkΔ] (6)

Pk|k =
[
P−1

k|k−1 +∇λk∇λT
k

Δ
λk
−∇2 log λk[nk − λkΔ]

]−1

(7)

where P and W denote the parameter and noise covariance

matrices, respectively; Δ = 0.005s denotes the time bin size;

∇λk = ∂λk

∂θk
and ∇2λk = ∂2λk

∂θk∂θT
k

denotes the first- and

second-order partial derivatives of the CIF w.r.t. θ at time

t = kΔ, respectively. The indicator variable nk = 1 if a

heart beat occurs in time ((k − 1)Δ, kΔ] and 0 otherwise.

D. Goodness-of-fit Tests

The goodness-of-fit of the model is tested with the time-
rescaling theorem [7]. Given a point process specified by

J discrete events: 0 < u1 < · · · < uJ < T , define the

random variables zj =
∫ uj

uj−1
λ(τ)dτ for j = 1, 2, . . . , J −1.

Then the random variables zjs are independent, unit-mean

exponentially distributed. By introducing the variable of

transformation vj = 1−exp(−zj), then vjs are independent,

uniformly distributed within the region [0, 1]. Let gj =
Φ−1(vj) (where Φ(·) denotes the cumulative density function

(cdf) of the standard Gaussian distribution), then gjs will

be independent standard Gaussian random variables. The

Kolmogorov-Smirnov (KS) test is used to compare the cdf of

vj against that of the random variables uniformly distributed

in [0, 1]. The KS statistic is the maximum deviation of the

empirical cdf from the uniform cdf. To compute it, vjs are

sorted from the smallest to the largest value, then we plot

values of the cdf of the uniform density defined as j−0.5
J

against the ordered vjs. The points should lie on the 45

degree line. In Cartesian plot of the empirical cdf as the

y-coordinate versus the uniform cdf as the x-coordinate, the

95% confidence interval lines are y = x ± 1.36
(J−1)1/2 . The

KS distance, defined as the maximum distance between the

KS plot and the 45◦ line, is used to measure the lack-of-fit

between the model and the data.

Fig. 1. Diagram of the autonomic blockade protocol.

In addition, we also compute the autocorrelation function

of gjs: ACF(m) = 1
J−m

∑J−m
j=1 gjgj+m. If gjs are inde-

pendent, they are also uncorrelated; hence, ACF(m) shall

be small (around 0 and within the 95% confidence interval
1.96

(J−1)1/2 ) for all values of m.

III. EXPERIMENTAL PROTOCOL AND DATA

The experimental data were recorded under the “auto-

nomic blockade assessments of the sympatho-vagal balance

and RSA” protocol [9] (Fig. 1). In each epoch, 5 min seg-

ments of continuous ECG and lung volume were recorded. In

the drug administered state, either atropine (ATR, 0.04 mg/kg

iv over 5 min, parasympathetic blockade) or propranolol
(PROP, 0.2 mg/kg iv over 5 min, sympathetic blockade) was

delivered to the subject. In the double blockade (DB), the

inputs from both sympathetic and parasympathetic branches

of the autonomic nervous system were suppressed [9]. A

total of 17 healthy young and old volunteers participated in

the study. Here we focus on two representative subjects.

The order of the AR model was determined based on the

Akaike information criterion (AIC) (by pre-fitting a subset of

the data) as well as the KS distance in the post hoc analysis.

In all univariate AR cases, the order p = 8 was chosen from

{2, 4, 6, 8, 10}. In bivariate AR analyses, the order p = q = 8
was used. The initial AR coefficients are estimated by solving

the Yule-Walker equation using about 40-50 seconds of the

initial recordings [5].

IV. IMPROVED BIVARIATE MODEL AND FREQUENCY

ANALYSIS

The comparative results of four probabilistic models for

the heart beat data are presented in Table II. It is noted

that although we only present the results from 2 subjects

(due to space limit), similar observations are also found for

other subjects. As seen from Table II, the inverse Gaussian
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TABLE II

COMPARISON OF THE KS DISTANCE BETWEEN 4 PROBABILISTIC

MODELS FOR 2 SUBJECTS. THE VALUES OF HR AND HRV ARE THE

AVERAGES OF μHR AND σHR WITHIN 5 MIN. EPOCH.

prob. model HR±HRV (bpm) KS dist. within 95% conf. bound
supine, control, J = 229 (subject 15)

Gauss 56±2.17 0.0900 No
invGauss 56±2.38 0.0590 Yes
lognormal 56±4.96 0.1189 No

gamma 56±2.54 0.1820 No
supine, ATR, J = 440 (subject 15)

Gauss 107±1.17 0.1224 No
invGauss 106±0.76 0.1277 No
lognormal 106±0.61 0.0953 No

gamma 105 ±1.21 0.1583 No
supine, DB, J = 394 (subject 15)

Gauss 88±0.68 0.1578 No
invGauss 88±0.55 0.1584 No
lognormal 88±0.31 0.0754 No

gamma 88±0.62 0.1582 No
upright, control, J = 337 (subject 15)

Gauss 80±1.72 0.1117 No
invGauss 78±1.73 0.0765 Yes
lognormal 78±3.42 0.1045 No

gamma 78±2.34 0.1487 No
upright, ATR, J = 440 (subject 15)

Gauss 114±1.17 0.1186 No
invGauss 114±0.91 0.1339 No
lognormal 113±0.93 0.1010 No

gamma 114±1.21 0.1289 No
upright, DB, J = 375 (subject 15)

Gauss 85±0.67 0.1298 No
invGauss 85±0.65 0.1540 No
lognormal 85±0.41 0.1323 No

gamma 85±0.53 0.1441 No
supine, control, J = 383 (subject 20)

Gauss 68±3.56 0.1114 No
invGauss 69±3.83 0.0416 Yes
lognormal 68±8.69 0.0728 No

gamma 68±3.21 0.1552 No
supine, PROP, J = 276 (subject 20)

Gauss 67±3.15 0.0929 No
invGauss 67±2.75 0.0721 Yes
lognormal 67±6.55 0.0514 Yes

gamma 67±3.54 0.1667 No
supine, DB, J = 440 (subject 20)

Gauss 107±1.44 0.0864 No
invGauss 107±1.36 0.1026 No
lognormal 107±1.80 0.0846 Yes

gamma 107±1.52 0.1543 No
upright, control, J = 376 (subject 20)

Gauss 86±2.48 0.1090 No
invGauss 86±2.76 0.0599 Yes
lognormal 86±6.08 0.0923 No

gamma 86±2.35 0.1223 No
upright, PROP, J = 301 (subject 20)

Gauss 72±2.62 0.1184 No
invGauss 71±2.55 0.0994 No
lognormal 71±6.18 0.1140 No

gamma 72 ±3.21 0.1821 No
upright, DB, J = 440 (subject 20)

Gauss 106±1.27 0.1437 No
invGauss 106±0.97 0.1010 No
lognormal 106±1.37 0.0907 No

gamma 106±1.08 0.1625 No
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Fig. 2. A snapshot of R-R intervals (in msec) under 6 different conditions
(subject 20). Top 3 panels: supine posture. Bottom 3 panels: upright posture.

TABLE III

IMPROVED GOODNESS-OF-FIT (OF INVERSE GAUSSIAN MODEL) BY

USING THE RESPIRATION COVARIATE.

subject epoch KS distance 95% conf. bound
15 ATR, supine 0.1277→0.1155 No
15 ATR, upright 0.1339→0.1199 No
15 DB, supine 0.1584→0.0941 No
15 DB, upright 0.1540→0.1070 No
20 PROP, upright 0.0994→0.0531 Yes
20 DB, supine 0.1026→0.0796 No
20 DB, upright 0.1010→0.0980 No

model achieves the overall best fit in terms of the smaller

KS distance, especially during the control and PROP epochs,

in both supine and upright positions. The lognormal model

achieves better performance during the DB epochs. The

gamma model has the worst performance among the four

probabilistic models tested here. All models perform rather

poorly during the ATR epochs.

The lack of fit in the KS plots in the absence of parasym-

pathetic modulation suggests that dynamics related to sym-

pathetic influence may require a more complex stochastic

model or structure. Furthermore, physiology suggests that

HR is influenced by other cardiovascular covariates, such as

the change of lung volume [4, 5]. Specifically, for the inverse

Gaussian model, we replace the instantaneous mean (1) by

μt = a0 +
p∑

i=1

aiRRt−i +
q∑

j=1

bjRPt−j , (8)

where RPt−j denotes the previous jth respiration measure-

ment before time t. Eq. (8) is motivated by the reports in

the literature that the cardiovascular system is modulated

and mutually influenced by many other covariates (e.g.,

systolic blood pressure, blood flow, and respiration). In our

experiments, it was found that the inclusion of the respiration

covariate helps to improve the KS fit (Table III) in all three

pharmacological conditions (ATR, PROP, and DB). Fig. 3

illustrates a comparative example between using (1) and (8)

in the “upright+PROP” condition.

Given the parametric AR model (8), we can evaluate the

frequency response for the R-R interval itself

H1(ω) =
1

1−∑p
i=1 ai(k)z−i

∣∣∣∣
z=ej2πf1

, (9)
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Fig. 3. Comparison of inverse Gaussian models with the mean as the
univariate (top) and bivariate (bottom) AR models for subject 20 (upright,
PROP). Left panel: estimated time-varying probability density function
of the R-R interval. Middle panel: KS plot. Right panel: autocorrelation
function. (Dashed lines indicate the 95% confidence bounds)
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Fig. 4. The time-varying RSA gain at HF (0.15-0.5 Hz) range (subject
20). The number in each subplot indicates the mean value of the RSA gain.

as well as the frequency response for the respiratory sinus
arrhythmia (RSA: RP→RR) [4]

H12(ω) =

∑q
j=1 bj(k)z−j

∣∣∣
z=ej2πf2

1−∑p
i=1 ai(k)z−i

∣∣∣
z=ej2πf1

, (10)

where f1 is the beat rate of the R-R and f2 is the sampling

rate (3 Hz) of the RP. With the estimated time-varying

AR coefficients {ai(k)} and {bj(k)} at time t = kΔ, we

may evaluate the instantaneous gain (amplitude) and power

spectrum in the frequency domain [6]. Since two major

rhythms in cardiovascular variability analysis are the one

occurring at the frequency of the Mayer waves (LF, 0.05-

0.15 Hz) and the one triggered by respiration (HF, 0.15-

0.5 Hz, ±0.04 Hz around the respiratory rate) [1], we can

compute the gain or the power over these frequencies over

time for both (9) and (10). As an illustration, Fig. 4 plots the

instantaneous RSA gain in HF while using a bivariate AR

model (8). From (9) we also compute the dynamic LF/HF

power ratio with the parametric autospectrum [1] (not shown

here) A small (or large) LF/HF ratio indicates relatively

predominant vagal (or sympathetic) control.

V. DISCUSSION

In modeling the heart beat interval during the control

epochs, the inverse Gaussian model achieves the best per-

formance, which is in agreement with our earlier claims [2,

3]. The Gaussian model achieves a similar performance since

when the random variable’s mean is much greater than its

variance, the inverse Gaussian can be well approximated by a

Gaussian shape. In modeling the pharmacological autonomic

blockade, the inverse Gaussian model is more suited for

PROP than ATR—this suggests that the sympathetic influ-

ence requires more effort for modeling in the absence of

parasympathetic modulation. The lognormal model is better

fitted for the double blockade—this is partly due to the

fact that during DB the lognormal model is more robust in

characterizing the significant drop in HRV. With inclusion

of the RP→RR interaction into the model, we both reflect a

more accurate physiological model of cardiovascular control

and we are able to explicitly monitor the respiratory effects

and evaluate the instantaneous RSA gain. The RSA gain is a

useful index of vagal control that often correlates with R-R

interval modulation. This is also confirmed by our example

(Fig. 4) where RSA values expectedly decrease in the upright

position as compared to supine, and they show significant

lower values in DB when vagal activity is absent.

The failure of the KS fit within 95% confidence interval in

the ATR epochs still leaves us challenges in choosing proper

probabilistic models. It is noted that thus far the model of

μRR, transfer function, and frequency analysis are all limited

by the assumption of a linear system, currently we are also

investigating the nonlinear coupling and modulation effects

among the cardiovascular/cardiorespiratory systems.
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