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ABSTRACT

The quantification of phase synchrony is important for the
study of large-scale interactions in the brain. Current methods
for computing phase synchrony are limited to the estimation
of the stability of the phase difference between pairs of sig-
nals over a time window, within successive frequency bands.
These approaches cannot quantify the synchrony across a group
of electrodes and over time-varying frequency regions from
multiple trials. In this paper, we address this issue by quan-
tifying the frequency locking between groups of electrodes
using a time-frequency based estimation of the instantaneous
frequency. The instantaneous frequency maps of individual
electrodes are combined to obtain the instantaneous frequency
histogram as an estimate of the amount of frequency locking
across electrodes. This analysis is then extended to the es-
timation of frequency locking across multiple electrodes and
trials. Results are shown for both synthetic signal models and
electroencephalogram (EEG) data collected from control and
schizophrenic subjects.

Index Terms— Phase synchronization, Time-frequency
analysis, Electroencephalography

1. INTRODUCTION

With the advance of neuroimaging technology, it is now pos-
sible to identify the oscillations of neuronal networks at high
temporal and spatial resolutions, using multichannel record-
ings. Simultaneous recording ofmultiple oscillations between
different cortical regions offers insight into how distributed
neuronal oscillations interact with each other. These interac-
tions, which can be used to study large-scale functional inte-
gration, are transient, time-varying, and frequency specific.
Therefore, there is a need for time-frequency based meth-
ods for quantifying the time-varying nature of the phase syn-
chrony.
Recently, new tools for detecting localized phase synchro-

nizations, with respect to time and frequency, have been de-
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veloped using the complexwavelet transform [1] and the com-
plex bilinear time-frequency distributions [2]. These methods
have the advantage of separating the amplitude component
from the phase and quantifying phase synchrony over time
and frequency. However, these measures are limited in the
way that they can only quantify pairwise synchrony between
neuronal oscillations, and cannot directly assess the large-
scale interaction between groups of neuronal signals.
In this paper, we propose a newmethod for addressing this

problem by quantifying multivariate phase synchrony across
groups of neuronal oscillations. The proposedmethod is based
on using the relationship between phase synchrony and fre-
quency locking. Since phase and frequency are directly re-
lated to each other, two signals are synchronous whenever
their instantaneous frequency is approximately the same. Us-
ing this relationship, we propose an instantaneous frequency
estimation method in the time-frequency domain to quantify
the amount of synchronization between groups of signals. The
IF estimates for different signals are combined using an in-
stantaneous frequency histogram (IFH) to indicate the amount
of synchronization. The proposed method is then extended
for multiple electrode and multiple trial EEG recordings. The
K-means algorithm is used to extract the most significant IFH
patterns across trials for a group of electrodes.

2. METHOD

Two monocomponent analytic signals, x1(t) = a1(t)e
φ1(t)

and x2(t) = a2(t)e
φ2(t), are phase synchronous if the phase

difference between the two signals is constant. To allow for
a small amount of noise in the phase of synchronous signals,
the phase difference can be approximately constant:

Δφ1,2(t) = mφ1(t)− nφ2(t) ≈ constant (1)

wherem and n are some integers, andΔφ1,2 is the phase dif-
ference between the two signals. The derivative of Equation
(1) can be shown as:

dΔφ1,2(t)

dt
= m

dφ1(t)

dt
− n

dφ2(t)

dt
= mω1(t)− nω2(t) ≈ 0

(2)
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where ωi(t) = dφi

dt (t) > 0 and wi(t) is the instantaneous
frequency (IF) of xi(t) in radians/second. Therefore, when
n = m, two monocomponent signals are phase synchronous
if they have approximately the same IF. This relation can be
extended to three or more monocomponent signals. If a set of
signals all have approximately the same IF, then all the signals
in the set are phase synchronous together [3].
The IF of a monocomponent signal can be computed by

taking the time derivative of the phase of the analytic sig-
nal. Unfortunately, most real life signals, including brain
signals, are not necessarily monocomponent. They tend to
be multicomponent and are approximately equivalent to sep-
arable components in the following general form: s(t) =
Σkak(t)eφk(t). While the same concept of phase synchrony
applies to multicomponent signals, computing their IFs re-
quires the use of more sophisticated methods [3].

2.1. Estimating IF of Multicomponent Signals

Ideally, the IF of a multicomponent signal will be the union
of the IFs of the separate components. Numerous techniques
exist to estimate the IF of a multicomponent signal. Previous
methods include time-frequencymoments, adaptive recursive
least squares, and adaptive least mean square [4, 5]. Since
most biological signals are non-stationary it is not possible
to estimate their IF from the signal in the time or frequency
domain. For this reason, we propose a time frequency (TF)
peak algorithm for estimating IFs for multicomponent non-
stationary signals.
A bilinear TFD belonging to Cohen’s class can be ex-

pressed as:

C(t, f) =

∫∫∫
φ(θ, τ)s(u +

τ

2
)s∗(u−

τ

2
)ej(θu−θt−2πτf) du dθ dτ

(3)
where the function φ(θ, τ) is the kernel function and s is
the signal. For the purposes of IF estimation it is impor-
tant to choose φ(θ, τ) such that it corresponds to a reduced-
interference distribution in order to remove the cross-terms.
In this paper we use the Choi-Williams distribution to esti-
mate the IF [6]. The proposed TF peak method can be sum-
marized as follows:

1. Using the Choi-Williams kernel, compute the TFD of
the signal, s(t), to get C(t, f).

2. Find the local peaks of C(t, f) using the following:

B(t, f) =

{
1 if {∂C(t,f)

∂f
= 0} ∧ {∂2C(t,f)

∂f2 < 0}

0 otherwise
(4)

whereB(t, f) is a binary-valued image with ones at the
local peaks of C(t, f) and zeros everywhere else.

3. Assign all nonzero time-frequency points into connected
components. A connected componentD contains nonzero
time-frequency points such that there is an 8-neighborhood

path containing only points in D. Two time-frequency
points are connected if B(t1, f1) = 1 , B(t2, f2) = 1 ,
|t2 − t1| ≤ 1, and |f2 − f1| ≤ 1.

4. Remove any connected component, Di, from B(t, f)
if |Di| < ε where |Di| is the support of Di. The re-
moval of connected components with a small support
reduces the effect of noise in s(t). The threshold, ε, is
dependent on the application and the time support of
the signal.

5. Compute the average energy of each component, Dj ,
as follows:

ξj =
1

|Dj|

∑
(t,f)∈Dj

C(t, f) (5)

Remove any connected component,Di, fromB(t, f) if
ξi < λ. The removal of low energy connected compo-
nents reduces the effect of noise in s(t). The threshold,
λ, is application dependent and should depend on the
maximum average energy component.

The remaining connected components of B(t, f) form the IF
estimate, F̂ (t, f), of s(t). The resulting F̂ (t, f) is a binary
image with ones indicating the time and frequency location
of the IF.

2.2. Instantaneous Frequency Histograms

Given the fact that phase synchronous signals have similar
IFs, the phase synchrony of multiple signals or multivariate
phase synchrony can be represented using an instantaneous
frequency histogram (IFH). If the collection of signals con-
tains K signals, computing the IF for each signal results in
K different IF estimates, F̂i(t, f) for i = 1, 2, . . . , K . Sum-
ming the IFs from the collection of signals results in the IFH,
IFH(t, f) =

∑K

i=1 F̂i(t, f). Since the IF estimate is a bi-
nary image, each value of the IFH is a discrete, finite value in
the range from 0 to K . For a single trial EEG consisting of
multiple electrodes, the IFH represents the multivariate phase
synchrony of the trial.

2.3. Multiple Trial IFHs

Most EEG studies involve multiple trials of the same stimu-
lus. Therefore, an EEG recording with N trials will result in
N IFH surfaces across the electrodes. Each of the IFHs must
be interpreted and analyzed to find general patterns of multi-
variate phase synchrony among the trials. We propose to use
data reduction techniques on the IFHs to determine represen-
tative patterns of multivariate phase synchrony across trials.
Typically, principal component analysis (PCA) is the pri-

mary tool for the dimension reduction of data sets. However,
because of the discrete, finite values of the IFH, PCA is not
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the best option. For this reason, we propose to use the K-
means clustering approach for reducing the N IFH surfaces
across trials into a few, distinct IFH components. The cen-
troids can be restricted to the finite values of the IFH. For
K-means clustering, each time-frequency point of the IFHs
is treated as a separate dimension in the clustering vector
space, and each of the N IFHs is treated as a point in the
clustering vector space. For indices i = 1, 2, . . . , N and
j = 1, 2, . . . , K , K-means clustering can be summarized as
follows:

1. Choose the initial centroids, Mj = median({IFHi :
IFHi ∈ Rj}) where Rj is a set of randomly selected
IFHs.

2. Assign each IFH to a cluster by finding its nearest cen-
troid Ci = argminj ‖IFHi − Mj‖2 , where Ci is the
cluster index that IFHi is assigned to.

3. Calculate the new centroids based upon the new cluster
assignments using Mj = median({IFHi : Ci = j}).
The median is used rather than the mean to keep the
centroids in the finite field.

4. If the centroids,Mj , have changed since the last itera-
tion, go back to step 2. If the centroids, Mj , have not
changed since the last iteration, stop. Once clustering
is complete, the significance of each centroid is deter-
mined by the number of IFHs in that cluster.

2.4. Quantifying IFHs

In order to quantify the phase synchrony from IFHs we com-
pute [3]:

pavg =

∑
(t,f)∈W

(IFH2(t, f)− IFH(t, f))

nc(nc − 1)nT nF

(6)

where nc is the number of signals, W is a time-frequency
window of interest, nT is the number of time samples in W ,
and nF is the number of frequency samples in W . The pavg

is an indicator of phase synchrony per TF point. An IFH with
a higher pavg indicates more signals are phase synchronous.

3. RESULTS

In this section, we will first test the validity of the proposed
method for determining the phase synchrony on a pair of syn-
thesized signals and then apply it to EEG signals.
Example 1: IFH of Synthetic Signals: In this example, we

consider two sinusoidal signals, x1(t) = sin(2πf1(t)+2π/3)
and x2(t) = cos(2πf2(t)) where f1(t) = 3u(t) + 3u(t −
2)− 6u(t− 3) and f2(t) = 3u(t)− 3u(t− 1) + 6u(t− 2)−
6u(t−3) such that u(t) is the unit step function. The sinusoids
have the same IF of 3Hz from 0 to 1 seconds and 6Hz from

2 to 3 seconds. The resulting IFH in Figure 1 shows that
the proposed method is effective at tracking the time-varying
phase synchrony.
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Fig. 1. The IFH of a pair of synthetic signals with common
IF from 0 to 1 seconds and from 2 to 3 seconds.

Example 2: Gamma Band Synchrony in Schizophrenic Pa-
tients: In recent years, there has been evidence that large-
scale functional integration of the brain is mediated by neu-
ronal groups that oscillate in the gamma band range (30-60
Hz). It has been found that schizophrenic patients exhibit
deficits in gamma band neural synchrony compared to nor-
mal subjects [7]. For the purpose of illustration, we examined
the gamma band EEG activity in a schizophrenia patient and a
non-psychiatric control subject who performed a continuous
performance task (CPT). The IFH is computed over the P300
window (200-600 ms after the stimulus) and the γ band (30-
55 Hz) for the frontal and parietal electrodes P3, P4, F3, and
F4 for 80 trials. K-means clustering with K = 10, ε = 10,
and λ = ξmax/2 is then performed on the 80 IFHs from each
subject. Figures 2 and 3 show the four most significant clus-
ter centroids for the control and schizophrenic subjects, re-
spectively, over time and frequency. Overall, the four cluster
centroids appear similar between the two subjects. However,
the centroids with the most phase synchrony, Figure 2(b) for
the control subject and Figure 3(a) for the schizophrenic sub-
ject, show more multivariate phase synchrony in the control
subject in the higher frequencies. At 44 Hz and 48 Hz, three
electrodes of the control subject are phase synchronous, while
only two electrodes of the schizophrenic subject are phase
synchronous. Tables 1 and 2 show the average correlations
of the four most significant cluster centroids over two differ-
ent frequency bands. The significance of the IFHs was tested
using surrogate data, and the K-means cluster centroids were
found to be significantly higher than the centroids obtained
from trial-shifted data 90% of the time.

4. CONCLUSIONS

In this paper, we introduced a new method for quantifying
the functional integration in the brain based on instantaneous
frequency estimation in the time-frequency plane. The ma-
jor contribution of the proposed method is that it can quan-
tify synchronization across multiple trials and multiple elec-
trodes as opposed to existing methods which focus on pair-
wise synchrony. The phase synchronization across multiple
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Fig. 2. The four most significant cluster centroids for the con-
trol subject. The number of IFHs belonging to each cluster:
(a) 21, (b) 12, (c) 9, (d) 6.
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Fig. 3. The four most significant cluster centroids for the
schizophrenia subject. The number of IFHs belonging to each
cluster: (a) 20, (b) 13, (c) 8, (d) 8.

Comp # Signif. Freq. Band (Hz) pavg

1 21/80 30-40 0.001
40-55 0.000

2 12/80 30-40 0.038
40-55 0.037

3 9/80 30-40 0.002
40-55 0.000

4 6/80 30-40 0.000
40-55 0.001

Table 1. The correlation averages in two different frequency
bands for the four most significant centroids of the control
subject.

electrodes and trials is quantified using IFH and K-means al-
gorithms. The proposedmethod has been applied to both syn-
thetic and actual EEG signals, and was shown to be effective
at determining phase synchronizations across time and fre-

Comp # Signif. Freq. Band (Hz) pavg

1 20/80 30-40 0.031
40-55 0.016

2 13/80 30-40 0.004
40-55 0.000

3 8/80 30-40 0.000
40-55 0.000

4 8/80 30-40 0.000
40-55 0.000

Table 2. The correlation averages in two different fre-
quency bands for the four most significant centroids of the
schizophrenic subject.

quency. The proposed measure can be extended to determine
the functional network patterns in the brain across space, time
and frequency.
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