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ABSTRACT

A novel approach to measure the interdependence of time se-
ries is proposed, based on the alignment (“matching”) of their
Huang-Hilbert spectra. The method consists of three steps: first,
empirical modes are extracted from the signals; those functions
carry non-linear and non-stationary components in frequency
limited bands. Second, the empirical modes are Hilbert trans-
formed, resulting in very sharply localized ridges in the time-
frequency plane; the obtained time-frequency representations
are known as Huang-Hilbert spectra. At last, the latter are
pairwise aligned by means of the stochastic-event synchrony
method (SES), a recently proposed procedure to match pairs of
multi-dimensional point processes. The level of similarity of
two Huang-Hilbert spectra is quantified by three parameters:
timing and frequency jitter of coincident ridges, and fraction of
non-coincident ridges.
The proposed method is used to detect steady-state visually

evoked potentials (SSVEP) in electroencephalography (EEG)
signals; numerical results indicate that the method is vastly
more sensitive to SSVEP than classical synchrony measures,
and therefore, it may prove to be useful in applications such
as brain-computer interfaces. Although the paper mostly deals
with EEG, the presented synchrony measure may also be ap-
plied to other kinds of time series.

Index Terms— Electroencephalography, Time-frequency
analysis, Synchronization, Spectral analysis, Hilbert transforms

1. INTRODUCTION

Quantifying the interdependence between time series is an im-
portant yet challenging problem. Although it is straightforward
to quantify linear dependencies, the extension to non-linear cor-
relations is far from trivial. A variety of approaches have been
proposed, stemming from research fields as diverse as physics,
statistics, signal processing, and information theory (see, e.g.,
[1] and [2]).
In this paper, we propose a novel approach to quantify syn-

chrony between signals; it measures the similarity of the so
called Huang-Hilbert spectra, which represent the instantaneous
amplitude and frequency of empirical modes extracted from the
original signals. In more classical time-frequency transforma-
tions such as (discrete and continuous) wavelet transforms, the
set of time-frequency basis functions (“wavelets”) is fixed; in
Huang-Hilbert spectra on the other hand, this set is extracted

from the signals themselves, which may lead to more accurate
time-frequency representations.
In earlier work [3], we developed a synchrony measure for

generic (one- and multi-dimensional) point processes (“event
strings”), referred to as “stochastic event synchrony” (SES); we
applied it to point processes on the time-frequency plane (“bump
models”) [4]. Those bump models capture the most prominent
oscillatory events in the signals at hand (see Fig. 1). In [3], we
used complex Morlet wavelets to map the signals unto the time-
frequency plane. In this paper, the method of [3] is extended
to Huang-Hilbert spectra [5]. One of the major advantages of
the proposed approach is its simplicity: it avoids computing
wavelets and extracting bump models, which are both compu-
tationally intensive operations.

Time-frequency map Time-frequency map

↓ ↓
Bump model Bump model

⇔

Fig. 1. SES applied to bump models [3].

The proposed method is applicable to generic time series;
in this paper, however, we will focus on time series that occur
in the context of neuroscience, in particular, electroencephalog-
raphy (EEG) signals [6], recorded from multiple electrodes lo-
cated on the scalp of a (human) subject. We will consider so
called steady-state visually evoked potentials (SSVEP), which
are stable responses that can be measured all over the scalp [7].
SSVEPs affect EEG synchrony, and as a result, synchrony mea-
sures can be applied to detect SSVEPs. In this paper, we will
apply our novel synchrony measure to detect SSVEPs. We will
present promising experimental results that seem to suggest that
our method is substantially more sensitive to EEG synchrony
perturbations than classical synchrony measures.
This paper is organized as follows. In the next section,

we review the empirical mode decomposition (EMD) method
and explain how it can be used to obtain time-frequency maps
(“Huang-Hilbert spectra”). In Section 3, we outline the idea
behind stochastic event synchrony, and discuss how it can be
used to quantify the similarity of Huang-Hilbert spectra. In
Section 4, we use this similarity measure to detect steady-state
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visually evoked potentials in EEG signals; we conclude this
paper with comments on further potential applications of our
approach.

2. EMPIRICAL MODEL DECOMPOSITION (EMD)

Empirical Mode Decomposition (EMD) decomposes signals
into so called “intrinsic mode functions” (IMF) [5]. The latter
are functions that satisfy the following two conditions: (i) the
number of extrema and the number of zero crossings are either
equal or differ at most by one; (ii) at any point, the mean value
of the envelope defined by the local maxima and the envelope
defined by the local minima is zero. An IMF represents an
oscillatory mode within a given signal: its cycles (defined by
its zero crossings) corresponds to one (and not more than one)
mode of oscillation; both the amplitude and frequency of this
oscillation may vary over time, in other words, the oscillation is
not necessarily stationary nor narrow-band.
The process of extracting an IMF from a signal x(t) (“sift-

ing process” [5]) consists of the following steps: (i) determine
the local maxima and minima of x(t); (ii) generate the upper
and lower signal envelope by connecting those local maxima
and minima respectively by some interpolation method (e.g.,
linear, spline, piece-wise spline [5] [8]); (iii) determine the lo-
cal mean m(t), by averaging the upper and lower signal en-
velope; (iv) subtract the local mean from the data: h1(t) =
x(t) − m1(t). Ideally, h1(t) is an IMF. However, in practice,
h1(t) may still contain local asymmetric fluctuations, e.g., un-
dershoots and overshoots; therefore, one needs to repeat the
above four steps several times, resulting eventually in the first
IMF. In order to obtain the second IMF, one applies the sift-
ing process to the residue ε1(t) = x(t) − IMF1(t), obtained by
subtracting the first IMF from x(t); the third IMF is in turn ex-
tracted from the residue ε2(t) and so on. One stops extracting
IMFs when two consecutive sifting results are close to identi-
cal; the empirical mode decomposition of the signal x(t) may
be written as:

x(t) =

n∑
k=1

IMFk(t) + εn(t), (1)

wheren is the number of extracted IMFs, and the final residue εn(t)
can either be the mean trend or a constant. An (artificial) exam-
ple (from [9]) is illustrated in Fig. 2.
The empirical-mode decomposition is obviously complete,

since (1) is an equality: the original signal can be reconstructed
from the IMFs and the final residue. Note that the IMFs are not
guaranteed to be mutually orthogonal, but in practice, they often
are close to orthogonal; it is also noteworthy that the IMFs are
adaptive, i.e., they depend on the signal x(t), as we anticipated
earlier.
By means of the IMFs, one can construct a time-frequency

representation of the signal x(t), i.e., the Huang-Hilbert spec-
trum (HHS) [5]. The idea is to compute the instantaneous ampli-
tude and frequency of each IMF. This can be done by computing
the following analytic signal from each IMF:

Z(t) = IMF(t) + i Y (t), (2)

with Y (t) the Hilbert transform of the IMF:

Y (t) =
1

π
P
∫ +∞

−∞

IMF(t)
t − t′

dt′, (3)

x
ε
3

IM
F1

IM
F2

IM
F3

t

Fig. 2. Empirical mode decomposition (EMD): the original sig-
nal (top), three IMFs (middle), and residue (bottom) [9].

where P indicates the Cauchy principal value of the integral [10].
The instantaneous amplitude a(t) and phase θ(t) of the IMF is
defined as the magnitude and angle respectively of Z(t). The
instantaneous frequency is then simply defined as:

ω =
dθ(t)

dt
. (4)

Huang-Hilbert spectra (HHS) represent the instantaneous ampli-
tude against instantaneous frequency and time [5]. HHS images
are typically sparse and contain sharp ridges, as illustrated in
Fig. 3. In the following section, we propose a method to quan-
tify the similarity of two Huang-Hilbert spectra; the key idea
will be to match ridges in one HHS to ridges in the other HHS.
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Fig. 3. Huang-Hilbert spectra (bottom) of two EEG channels
(top); the horizontal line at 20Hz in the HH spectra corresponds
to the SSVEP stimulation frequency.

3. STOCHASTIC EVENT SYNCHRONY (SES)

In earlier work [3], we developed a measure that quantifies
the similarity (“interdependence” or “synchrony”) of two (one-
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Fig. 4. (left) Events (“ridges”) extracted from HHS1 (red) and
HHS2 (blue) of Fig. 3; (right) coincident ridges.

or multi-dimensional) point processes, referred to as stochas-
tic event synchrony (SES); we applied that measure to point
processes on the time-frequency plane, more precisely, bump
models [4] (cf. Fig. 1). Here we will use SES to quantify the
similarity of two Huang-Hilbert spectra. The first step is to
extract a point process (“event string”) from an HHS (see Fig. 4
(left)): from the given HHS, we only retain theN largest instan-
taneous amplitudes. (N is typically about 100.) Each of the N

remaining points (“ridges”) rj = (tj , aj , fj) with j = 1, . . . , N

is viewed as an event, and the sequence r = (r1, . . . , rN ) is a
three-dimensional point process; in other words, the remaining
points rj in Fig. 4 (left) take the role of the “bumps” in Fig. 1.
Fig. 4 (left) suggests a natural way to define the similarity of

two HHS: ridges in one time-frequency map (red) may not be
present in the other map (blue) (“non-coincident” ridges); other
ridges are present in both maps (“coincident ridges”), but appear
at slightly different positions on the maps.
Fig. 4 (right) depicts the coincident ridges, obtained after

matching the event strings r (red) and r′ (blue); the black lines
connect the centers of coincident ridges, and hence, they visu-
alize the offset in position between pairs of coincident ridges.
Stochastic event synchrony consists of the following parame-
ters: (i) ρ: fraction of non-coincident ridges; (ii) δt and δf : av-
erage time and frequency offset respectively between coincident
ridges; (iii) st and sf : variance of the time and frequency offset
respectively between coincident ridges. The alignment of the
two ridge traces (cf. Fig. 4 (right)) is cast as a statistical infer-
ence problem [3]. The associated probabilistic model depends
on the SES parameters θ = (δt, δf , st, sf ) besides the following
two kinds of latent variables: (i) binary variables Ckk′ , associ-
ated to each pair of ridges, where Ckk′ = 1 indicates that event
Sk of the first HHS is coincident with event S′k′ in the other
HHS, and where Ckk′ = 0 otherwise; (ii) binary variables Bk

and B′k′ , which indicate whether a ridge is non-coincident. The
latent-variable model is of the form:

p(r, r′, b, b′, c, θ) ∝

n∏
k=1

(βδ[bk − 1] + δ[bk])

n′∏
k′=1

(βδ[b′k − 1] + δ[b′k])

·
n∏

k=1

n′∏
k′=1

(
N (t′k′ − tk; δt, st)N (f ′k′ − fk; δf , sf )

)c
kk′

·
n∏

k=1

(
δ[bk +

n′∑
k′=1

ckk′ − 1]
) n′∏

k′=1

(
δ[b′k′ +

n∑
k=1

ckk′ − 1]
)

· p(δt)p
(
st

)
p(δf )p

(
sf

)
, (5)

where β is a constant (which serves as a knob to control the
number of non-coincident ridges), n and n′ is the total number

of ridges in the two HHS, andN (x; m, s) stands for a univariate
Gaussian distribution with meanm and variance s [3]. For con-
venience, we choose improper priors p(δt) = p(δf ) = p(st) =
p(sf ) = 1. The SES parameters θ = (δt, δf , st, sf ) and the
latent variables C, B and B′ are determined jointly by MAP es-
timation. This may practically be carried out by cyclic max-
imization [3]: for fixed θ, one maximizes log p (cf. (5)) w.r.t.
C, B and B′ and vice versa. Conditional maximization w.r.t. θ
is straightforward, however, the conditional maximization w.r.t.
C, B andB′ is non-trivial: it involves an intractable discrete op-
timization problem. We solve that problem approximately (but
successfully) by iterative max-product message passing (“itera-
tive dynamic programming”) on a graphical model correspond-
ing to the latent-variable probabilistic model (5) (see Fig. 5) [3].
The edges correspond to variables, the nodes corresponds to
factors in (5). The nodes N corresponds to the Gaussian dis-
tributions in (5), the nodes denoted by Σ̄ represent the factors(
δ[bk +

∑n′

k′=1
ckk′ − 1]

)
(blue) and

(
δ[b′k′ +

∑n

k=1
ckk′ − 1]

)
(red), and the nodes denoted by β correspond to the factors
(βδ[bk−1]+δ[bk]) and (βδ[b′k−1]+δ[b′k]). The arrows in Fig. 5
depict “messages” (i.e., probabilistic information about which
pairs of ridges are coincident and which not) that are iteratively
computed at each node according to the max-product compu-
tation rules. Intuitively, the nodes may be viewed as computing
elements that iteratively update their opinion about which ridges
match and which do not, based on the opinions (“messages”)
they receive from neighboring nodes. When the algorithm even-
tually has converged (and the nodes have found a consensus so
to speak), the messages are combined to obtain a decision on
C, B and B′, and an estimate of ρ and the other SES parame-
ters [3].
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Fig. 5. Graphical model of (5).

4. RESULTS

We applied the proposed ridge-matching method to EEG sig-
nals; the latter were recorded from a human subject that was
watching flashing patterns with frequency of 20Hz, presented
during 2s with silent intervals of 3s. The flashing patterns evoke
oscillatory brain activity at the same frequency (“steady-state vi-
sually evoked potentials”) [7]. The EEG signals were recorded
from four locations (two frontal and two temporal areas) [6].
We used EMD to extract IMF components from those EEG sig-
nals (cf. Section 2). Next, the IMF components are Hilbert
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transformed (resulting in Huang-Hilbert spectra), and the low-
frequency drifts (<5Hz) and high-frequency interference parts
(>30Hz) of the IMF components are removed. Figure 3 shows
a segment of two EEG signals (recorded by two frontal chan-
nels) together with their Huang-Hilbert spectra. At last, we de-
termine the similarity of the latter by means of stochastic event
synchrony (cf. Section 3): each pair of HHS is matched, and the
timing and frequency jitter st and sf of the coincident ridges,
and the fraction of non-coincident ridges ρ are computed. Those
parameters are then averaged over all pairs of Huang-Hilbert
spectra, resulting in three global measures of interdependence.
As a benchmark, we also quantify the synchrony of the EEG sig-
nals by means of classical measures: magnitude squared coher-
ence (COH), partial directed coherence (PDC), directed trans-
fer function (DTF), direct DTF, and full frequency DTF [11];
those classical measures are computed after bandpass filtering
the EEG signals in a narrow band (18–22Hz) centered at the
SSVEP stimulation frequency (20Hz).
We investigated whether those measures can detect fluctua-

tions in EEG synchrony (“interdependence”) in the above ex-
periment. In particular, we tried to distinguish EEG signals
recorded during stimulation from EEG recorded in silent inter-
vals; for each of those two conditions, we consider 32 EEG seg-
ments of the same length (1.5s). Table 1 summarized the re-
sults: it lists classification errors obtained by the leave-one-out
procedure; for the sake of simplicity, we used a linear classifier
(hyperplane). We used the synchrony measures as single fea-
tures and as pairs of features. Due to space constraints, Table 1
only contains the results for the pairs that resulted in the small-
est classification errors: of the pairs without SES parameters,
the combination of dDTF and COH gave the best result (21.8%
incorrectly classified), whereas the best overall result was ob-
tained by the combination of COH and ρ (7.8%). This result
could not be further improved by increasing the number of fea-
tures; this is probably due to the relatively small size of the data
set. On the other hand, from Fig. 6, it becomes clear that by
using non-linear classification techniques such as support vec-
tor machines, one may be able to reduce the classification error
even more.

Features Correct Features Correct

st 36.0% sf 29.7%
ρ 14% COH 25%
PDC 42.3% DTF 39.1%
dDTF 37.5% ffDTF 39.7%
dDTF and COH 21.8% ρ and COH 7.8%

Table 1. Percentage of incorrectly classified EEG signals.

5. CONCLUSIONS

We observed an increase in EEG synchrony during SSVEP stim-
ulation, with the most significant effects measured by magni-
tude squared coherence (COH) and the SES parameter ρ. Pre-
vious studies reported similar effects, and emphasized that the
level of EEG synchrony is correlated with the subject’s atten-
tion [12] [13].
The present study is highly relevant for brain-computer in-

terfaces (BCI). A brain-computer interface is a direct commu-
nication pathway between a human or animal brain and an ex-
ternal device. Many studies have confirmed that SSVEP-based
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Fig. 6. ρ vs. COH for SSVEP (blue circles) and non-SSVEP
(red stars).

BCI systems have the highest overall performance; moreover,
such systems can be used by most subjects without much prior
training. However, state-of-the-art SSVEP-based BCI systems
require long stimulation time to achieve satisfactory classifica-
tion (usually around 3.5s), and therefore, they yield relatively
low data rates. This is largely due to the fact that those sys-
tems typically only use the power spectrum as input features,
in particular, the power spectrum at the SSVEP stimulation fre-
quencies. As our study shows (see also [14]), EEG synchrony
has strong potential for SSVEP detection: despite the very short
stimulation period (only 1.5s), we obtained low classification
errors (7.8% at best). As a consequence, synchrony measures
(particularly SES in conjunction with EMD) may in the future
prove to be very useful in the context of BCI.
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