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ABSTRACT
In this paper a method based on wavelet transform (WT) and

particle filtering (PF) for estimation of single trial event-related

potentials (ERPs) is presented. The method is based on recur-

sive Bayesian mean square estimation of wavelet coefficients

of the ERPs, using PF as the estimator. Simulation results are

provided to demonstrate the superior performance of PF over

Kalman filtering (KF) for non-Gaussian and non-linear elec-

troencephalography (EEG) signals. The methods were also

applied to the real data in an odd-ball paradigm to explore the

changes in the P300 component from trial to trial.

Index Terms— Event related-potentials, single trial esti-

mation, P300, particle filtering, Kalman filtering.

1. INTRODUCTION

Event related-potentials (ERPs) are the activity of the brain as

the response to a kind of stimuli and can provide records of

brain activity at any reasonable scale of temporal resolution

[1]. Conventional methods for analyzing ERPs involve av-

eraging time-locked segments of the EEG signal over many

trials to obtain the ERP waveform. These methods assume

that the statistical parameters of the ERP waves are constant

over time and the background EEG is a random process that

is attenuated by averaging over trials. This is acceptable in

some cases. However, there is evidence that ERP waves may

vary considerably over time [2] due to changes in the degree

of fatigue, habituation, or level of attention of the subject.

Therefore, a method for estimation of single trials to investi-

gate the variability of ERPs from trial to trial is desirable.

Statistical signal processing methods including maximum

a posterior (MAP) solutions [3] and Wiener filtering [4] are

the major approaches that have been widely used in ERP sin-

gle trial estimation. In [5] maximum likelihood (ML) is for-

mulated yielding the estimators of amplitude and latency jit-

ter of single trials. A Bayesian approach for construction of

a single-trial estimator for the ERPs by a subspace regular-

ization method has been proposed in [6]. In this approach
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the second-order statistical information extracted from a set

of measured potentials was used to represent the prior infor-

mation for the estimation. An extension of this single-channel

subspace regularization method to multi-channel is presented

in [7].

Another promising method in statistical signal process-

ing, Kalman filtering (KF), has been developed and used for

the separation of each single measured response (trial) into

background activity and ERP parts [8]. KF has been also em-

ployed for estimation of the dynamic changes of amplitude

and latency of ERPs by considering the entire epoch of the

ERP trials as the input to the KF [9]. Unfortunately, these

techniques fail to estimate single trial ERP in many cases, be-

cause of the very low ERP signal to background noise power

ratio, the non-Gaussian and stochastic nature of the EEG, and

the inter-trial variability of the recorded ERPs.

In this study we present an algorithm for estimation of

single trial ERPs, where particle filtering (PF) is an estimator

for coefficients of discrete wavelet transform (DWT). Based

on the concept of sequential importance sampling and the use

of Bayesian theory, PF is particularly useful in dealing with

nonlinear and non-Gaussian problems [10]. Combining DWT

and PF is an effective method for denoising a non-stationary

signal such as the ERP in a non-linear and non-Gaussian EEG

environment.

2. METHODS

2.1. Problem Formulation in State Space

The M wavelet coefficients of time locked ERP signals in the

kth trial are formulated as

yk = [ yk(1) yk(2) . . . yk(M) ]T (1)

where [.]T indicates the transpose operation. By modeling

the wavelet coefficients in the state space, the evolution of the

state {xk, k ∈ N}, and the relation between the state and the

estimated wavelet coefficients (the measurement equation) are

respectively given by

xk = fk−1(xk−1,wk−1) (2)
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yk = hk(xk,vk) (3)

where fk and hk are generally nonlinear functions of the state

xk, and wk−1 and vk are i.i.d. noise processes. We search

for the filtered estimates of xk based on a set of all available

wavelet coefficients y1:k = {yi, i = 1, . . . , k}, up to the kth

trial.

By recursive calculation of the posterior density function

p(xk|y1:k) of state xk at trial k, the estimation of state xk can

be the expected value of its posterior density at trial k. Via

Bayes rule, an available measurement yk at time k is used to

update the posterior density

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(4)

where p(xk|y1:k−1) is computed in the prediction stage us-

ing the Chapman-Kolmogorov equation and p(yk|y1:k−1) is

a normalizing constant.

Kalman and particle filtering are two major approaches

for solving the recursive equations (4). In the following sec-

tions these algorithms are summarized.

2.2. Kalman Filter

For a Kalman filter if fk and hk assumed to be known and lin-

ear functions and random sequences wk−1 and vk be mutu-

ally independent zero mean white Gaussian noise with known

covariances, the posterior density becomes Gaussian and one

can evaluate only the mean and the covariance matrices in

closed form.

In the linear Gaussian environment where the (states’ dis-

tribution is Gaussian) Kalman filtering is an optimal solu-

tion. This cannot be achieved using other recursive algo-

rithms. Also, considering any other distribution for states,

the Kalman filter is the best linear estimator in the presence

of Gaussian white noise.

2.3. Particle Filter

In PF, the posterior distributions are approximated by discrete

random measures defined by particles {x(n), n = 1, . . . , N}
and their associated weights {w(n), n = 1, . . . , N}. The dis-

tribution based on these samples and weights at the kth trial

is approximated as

p(x) ≈
N∑

n=1

w(n)δ(x − x(n)) (5)

where δ is the Dirac delta function and (.)n refers to the nth

weight.

If the particles are generated according to the distribution

p(x), the weights are equal and will be 1/N . When genera-

tion of the particle by direct sampling from unknown distri-

bution p(x) is impossible, the particles are generated from a

known distribution π(x) called importance density. This con-

cept, known as importance sampling, results in the following

weights [10]:

w(n) ∝ p(x(n))
π(x(n))

(6)

Suppose at kth trial we want to approximate the posterior

distribution p(xk|y1:k) subject to having p(xk−1|y1:k−1). If

the importance density is chosen such that it can be factorized

to

π(xk|y1:k) = π(xk|xk−1,y1:k)π(xk−1|y1:k−1) (7)

then the new samples x(n)
k can be obtained according to the

importance density π(xk|x(n)
k−1,yk) which depends on the old

samples and the new measurements.

Using Bayes’ rule (4) and equations (6 and 7), the new

weights are updated as follows [10]:

w
(n)
k ∝ w

(n)
k−1

p(yk|x(n)
k )p(x(n)

k |x(n)
k−1)

π(x(n)
k |x(n)

k−1,y1:k)
(8)

The choice of importance density is one of the most cru-

cial issues in the design of PF and plays a significant role in

its performance. This function must have the same support

as the probability distribution to be approximated. In gen-

eral, the closer the importance function to the distribution, the

better the approximation is. The most popular choice for the

prior importance function, also used in this paper, is given by

π(xk|x(n)
k−1,y1:k) = p(xk|x(n)

k−1) (9)

This choice of importance density implies that we need to

sample p(xk|x(n)
k−1). A sample can be obtained by generat-

ing a noise sample w(n)
k−1 ∼ N (0,Qw) and setting x(n)

k =

fk−1(x
(n)
k−1,w

(n)
k−1). Also, it implies that particle weights from

equation (8) can be updated by

w
(n)
k ∝ w

(n)
k−1p(yk|x(n)

k ) (10)

The importance sampling weights indicate the level of im-

portance of the corresponding particle. A relatively small

weight implies that the sample is drawn far from the main

body of the posterior distribution and has a small contribution

in the final estimation. Such a particle is said to be ineffec-

tive. If the number of ineffective particles is increased, the

number of particles contributing to the estimation of states is

decreased, so the performance of the filtering procedure dete-

riorates. The degeneracy can be avoided by a resampling pro-

cedure. Resampling is a scheme that eliminates the particles

with small weights and replicates those with large weights ac-

cording to their weights.
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3. EXPERIMENTAL RESULTS

3.1. Simulated Data

To generate simulated data, two Gaussian functions were used

resembling P300 and N400 components. P300 is a positive

wave which occurs with a latency of approximately 300 ms

after rare or task relevant stimuli and N400 is a negative wave

which occurs approximately 400 ms after stimuli. The ampli-

tudes and latencies of the first peak were assumed to change

sinusoidally from trial to trial by adding Gaussian white noise

(GWN). The amplitudes and latencies of the second peak were

assumed to change according to a uniform random distribu-

tion, during trials.

For better assessment of the proposed algorithms, GWN

and real background EEG activity were considered as two

different kinds of noise. Therefore the signal-to-noise ratio

(SNR) and the signal-to-background ratio (SBR) can be de-

fined as follows:

SNR = 10 log[
P (signal)
P (GWN)

] (11)

SBR = 10 log[
P (signal)

P (background)
] (12)

where P (.) indicates the power of the signal. SNR repre-

sents the amount of GWN and both KF and PF are trying to

suppress this kind of noise, theoretically. SBR is a measure

of background activity of the brain which is a nonlinear and

non-stationary noise and is of main interest in this study.

In all the algorithms, the fk−1 and gk functions in equa-

tions (2) and (3) are assumed to be identity functions and the

covariances of wk−1 and vk in KF were assumed to be Qw =
σwI and Qv = σvI respectively. Whereas, in the PF the co-

variance of noise matrices were assumed to be Qv = qvI and

Qw = qwI respectively, where σv , σw, qv , qw were known

and constant parameters, and I is the identity matrix. In the

KF, only the σv/σw ratio is important so σv = 1 was chosen

for convenience. In the PF qv and qw play different roles and

a proper combination of them can lead to better results, but

here we fixed qv = 5 and only qw was adjusted.

Fig. 1 shows the output SNR and SBR vs. input SNR

and SBR in dB. They are obtained by finding the best σw and

qw parameters in each SNR and SBR. To tune the parame-

ters, each parameters was increase by the step of 3 units and

the algorithms were running 100 Monte Carlo trials in each

step, and the best parameters among them were selected. Us-

ing wavelet coupled with PF or KF, as two stages of denois-

ing, causes all algorithms to have proper performance in high

input SNR. Comparing the SBR for the PF and KF shows

that they have the same performance in the high input SBR,

but when the amount of background EEG increases and the

noise becomes more non-Gaussian, performance of the PF

improves accordingly. In this linear estimation, if the added

noise is GWN, the KF is the best estimator and the superior

performance of PF over KF in Fig. 1 is the result of added

non-Gaussian background noise.
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Fig. 1. Output SNR and SBR vs. input SNR and SBR in the

simulated data.

3.2. Real Data

Real data was obtained using an odd-ball paradigm in the

Cognitive Electrophysiology Laboratory, School of Psychol-

ogy, Cardiff University. Subjects heard in total 300 tones, 240

of which were frequent (80%) and 60 of which were infre-

quent (20%). The frequency bandwidth of the linear bandpass

filter was set to 0.03-40 Hz and the sampling rate was 250 Hz.

A Fz reference was employed during acquisition, and the data

were re-referenced off-line to the average of the left and right

mastoids.

Epochs from 200ms to 500ms time-locked to stimulus on-

set were extracted. A 150ms pre-stimulus interval was used

for baseline correction. Since the estimation of first trials is

important, the initial filter values should be selected appropri-

ately. Each algorithm was run two times: in the first run the

initial filter values were set to zero and in the second run they

were set to the last estimated trial of the first run.

Fig. 2 shows the results of the proposed algorithms for

real data. The Cz site, at which the P300 component ampli-

tude in the odd-ball paradigm is prominent, was chosen for

analysis. Fig. 2 (a) shows all the epochs of the original data

and their mean signal. The epoch signals are also presented in

Fig. 2 (b) in the form of colored images, in which epochs are

plotted vertically with time on the horizontal axis and color

represents the epoch amplitudes. These images can be used to

visualize variability in the amplitudes and latencies of ERPs.

Fig. 2 ((c), (d)) shows estimated ERPs with KF and PF, and

((e), (f)) shows ERP images for estimated data using KF and

PF. The estimated amplitudes of the P300 waves for consec-

utive trials were obtained by finding the maximum value and

the results are shown in Fig. 2 ((g), (h)).

In previous studies, there is evident for decreases in P300

amplitude over trials in the odd-ball paradigm [11]. A de-

crease in the P300 amplitude can be seen for the results of
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Fig. 2. Results for real data. (a) Data epochs with their average (thick line), (b) ERP image for real data, ((c), (d)) Estimated

ERPs with KF and PF, ((e), (f)) ERP image for estimated data using KF and PF, ((g), (h)) amplitudes of the P300 waves for

consecutive trials extracted by KF and PF.

the PF (Fig. 2 (h)) but not for the KF method (Fig. 2 (g)).

The changes in amplitude has a constant rate over the 60 in-

frequent trials for this subject. Also a small increase in the

latency can be seen in the ERP images.

4. CONCLUSIONS

We have proposed a new method for single-trial estimation of

ERPs. The method is based on discrete wavelet transform and

particle filtering. The main benefits of the proposed method

are application of wavelet-based PF together with the use of

sequential importance sampling concept, as well as Bayesian

theory and its accurate performance in non-Gaussian and non-

linear data like EEG signals. The effectiveness of the methods

is illustrated for both simulated and experimental data. As a

specific application, the method was applied to the estimation

of the P300 component. These observation demonstrate the

potential for this approach to single trial analysis of EEG and

ERP data.
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