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ABSTRACT
Recent research has suggested disrupted interactions between brain
regions may contribute to some of the symptoms of Parkinson Dis-
ease (PD). It is therefore important to develop models for inferring
brain functional connectivity from non-invasive imaging data, such
as functional magnetic resonance imaging (fMRI). In this paper, we
propose applying Probabilistic Boolean Network (PBN) for model-
ing brain connectivity due to its solid stochastic properties, compu-
tational simplicity, robustness to uncertainty, and capability to deal
with small-size data, typical for fMRI data sets. Applying the pro-
posed PBN framework to real fMRI data recorded from PD sub-
jects, we noticed that the PBN method detected statistically signifi-
cant brain connectivity between region-of-interest (ROIs) in PD and
normal subjects. In addition, the PBN results suggest a mechanism
of the effectiveness of L-dopa, the principal treatment for PD.

Index Terms— Probabilistic Boolean Network, fMRI, Brain
Connectivity, Group Analysis

1. INTRODUCTION

The introduction of non-invasive medical technologies such as fMRI
and quantitative EEG allows researchers to gain more insightful un-
derstanding about human brain functioning in disease states. Un-
derstanding brain connectivity, the neural influence that one brain
region exerts over another, is increasingly recognized as important
for brain function, and its impairment may be associated with neuro-
degenerative diseases such as Parkinson Disease (PD).

Learning effective connections between brain regions of interest
(ROIs) requires a mathematical model suitable for complex, large-
scale, and dynamical system computation, and there have been sev-
eral models proposed in the literature, such as structural equation
modeling (SEM) [1], multivariate autoregressive models (MAR) [2],
dynamic causal modeling (DCM)[3], and dynamic Bayesian net-
work (DBN)[4]. Both SEM and MAR are conventional linear mod-
els which take the blood-oxygenation-level-dependent (BOLD) sig-
nals as direct inputs. As the functioning of brain has been widely
believed to act in a nonlinear way, DCM, a nonlinear input-state-
output model, has been actively applied for brain connectivity learn-
ing as a supplement to linear modeling methods. Recently, (dy-
namic) Bayesian networks (BN) have been applied to discover brain
connectivity in fMRI. BN approach does not require a prior structure
based on anatomical connections, making it suitable for pathological
conditions like PD, where functional connectivity may not be known
before hand.
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DBN’s recent success for learning brain connectivity [4] has in-
spired us to explore the Probabilistic Boolean Network (PBN). PBN
has proved successful in several areas, such as in gene expression
analysis. PBN describes the dynamic of the studied system in the
probabilistic context of markov chain [5]. The interaction among
different nodes of the system is represented based on logical rules
with stochastic properties. PBN has many features that makes it very
attractive in fMRI data analysis: it has computational simplicity, ro-
bustness to uncertainty, and is capable of dealing with small-size
data.

The paper is organized as follows. We describe the PBN frame-
work for brain effective connectivity and group analysis in Section 2.
A case study using fMRI data from normal and PD subjects perform-
ing a motor task at three progressive levels of difficulty is discussed
in Section 3.

2. METHODS

In this section, we present a PBN-based framework for inferring con-
nectivity between all interested brain regions. This framework not
only visualizes, but also quantifies the connections between brain
regions. Those quantitative inter-region connections will offer in-
sightful understanding of the underlying mechanism of brain activ-
ities. The PBN framework primarily consists of three components,
including the preprocessing of fMRI data, the inference of PBN, as
well as group analysis in fMRI using PBNs.

2.1. Preprocessing of fMRI data

The raw fMRI data first goes through 3D motion correction and slice
timing correction upon being obtained, and the data are then further
motion corrected with Motion Corrected Independent Component
Analysis (MCIMCA), a computationally expensive, but highly accu-
rate method. We then manually draw all 18 ROIs on each structural
scan that has been aligned with the functional data using Amira soft-
ware. The resulted fMRI data is a matrix containing time courses
of voxels belonging to the 18 ROIs. Since PBN is a discrete-valued
probabilistic model, its input data is confined to be binary vectors,
unlike the popular Bayesian Network normally dealing with continuous-
valued data. In addition, we focus on an integrated analysis on the
ROI-level, instead of studying the individual behavior of each voxel.
Therefore, the success of our PBN analysis depends on the well-
being of three important preprocessing steps: denoising, voxel se-
lection, and binarization.

fMRI Denoising: Most current denoising methods focus on build-
ing a reasonable model for serially correlated fMRI data. A tradi-
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tional model for fMRI time series y of each voxel is linear regres-
sion model [6]. Some new approaches for fMRI denoising have been
proposed as efficient ways to extract the underlying components that
are task-related. Among them, exploratory analysis such as Indepen-
dent Component Analysis (ICA) and Canonical Correlation Analy-
sis (CCA) have received the most attention. CCA focuses on find-
ing independent components si(t) with maximum autocorrelation,
and under certain circumstances may compare favorably with ICA
and PCA in extracting interested signals from fMRI [7] since it is
more computationally efficient, and more robust to low sample size.
However, both linear regression modeling and exploratory analysis
of fMRI data have their own shortcomings that may affect the statis-
tical results. Though we have included CCA as part of a complete
denoising process in our study, for simplicity, here we simply re-
move the low-frequency drift from raw data through linear detrend-
ing as denoising. We leave other tasks such as activation detection
to the following processing steps in PBN modeling.

Voxel Selection: Many previous fMRI modeling methods pay
special attention to those activated regions indicated by high signifi-
cant values (t-value) obtained through software such as SPM. In our
study, we take into account all 18 ROIs since we aim at obtaining
a complete PBN. Given the fact that our study focuses on region-
specific interactions, choosing appropriate voxels in each region to
represent the overall behavior of that region will significantly con-
tribute to the success of our PBN analysis. There are various ways
for voxel selection including peak selection, eigenvariate selection,
and average selection. There exists no universal standard on how to
choose a subset for optimal performance. Our approach for voxel
selection combines several previous methods: we first use SPM to
obtain t-values of all voxels in the brain, and then find the two-tailed
critical value c at a 95% level. Those voxels with t-values above the
critical value are divided into two groups, positively activated group
with t-values higher than the critical value and the negatively acti-
vated group with t-values lower than the threshold. For voxels in the
positively activated group, we keep their time courses unchanged,
while we flip the time courses of voxels in the negatively activated
group. To distinguish activated voxels from un-activated voxels, we
further reconstruct the data by zeroing the time courses of all un-
activated voxels. For each ROI, we do not simply take the mean of
all activated voxels inside to represent the activities for that region,
instead, we build a cubic with unit length centering at each activated
voxel, and replace its original time course with the mean of time
courses of voxels inside that cubic.

Binarization: One big challenge we face for PBN inference is
to develop a feasible binarization method which could quantize real-
valued fMRI data into binary values (on-state and off-state). General
data-driven binarization methods usually aim at finding a threshold,
such as the ”big jump” method in [5], and the approach described in
[9]. The basic idea of ”big jump” method is to find the largest differ-
ence between two consecutive values in the sorted data as the thresh-
old. Since different ROIs reveal different levels of measurements,
our binarization method is conducted on a ROI-wise basis. How-
ever, our preliminary results from exploring the ”big jump” method
do not seem optimistic to us given the fact that the largest differ-
ence often happens in the beginning of our sorted data, which makes
the resulted binary data almost have no off states. [9] proposed a
new binarization method based on extended linear model. It involves
pre-whitening unknown noise by estimating the serial correlations of
noise components, and then comparing the noise-removed data with
a prespecified threshold, which is defined as a constant mutiplied by
the variance of the whitened noise. The results for each voxel are
stored in a binary vector to indicate whether elevated activity due to

the paradigm occurs at each measurement time. As for this project,
we adopt the approach proposed in [8], which focuses on capturing
the first-order statistical trend in the fMRI data because of its robost-
ness against parameter change. Since the measurements of fMRI,
known as the blood oxygen level-depend (BOLD) response, directly
reflects the tested behavior, usually described by the task paradigm,
it is reasonable to model the BOLD response as a hidden markov
model (HMM) process with parameters determined by the paradigm
and itself. The key elements necessary to form a complete HMM
include a set of observations O(t), which, in our case, are the time
courses of the ROIs, a two-state (1: off, 2: on) transition matrix A,
and observation probability distribution Bi for each state (i = 1, 2),
which is simplified as a Gaussian Distribution, and an initial state
π. Since we assume that the task starts from the rest condition, the
initial state π could be set as π1 = 1, and π2 = 0. The mean μi

and variance σi of observation probability distribution for state i are
determined by the structure of the paradigm p and the observations
Ot. Take the off-state for example,

μ1 =
1

|poff |
�

t∈poff

Ot, σ1 =

���� 1

|poff |
�

t∈poff

(Ot − μ1)2, (1)

where poff is the off-state fraction of the task paradigm. For the
transition matrix A, we try a couple of values within an acceptable
range, and especially pay attention to those results shared by dif-
ferent choices of A. We then employ Viterbi Algorithm to obtain the
most likely state sequence, which is used to represent the fMRI voxel
time course in the binary domain.

2.2. Learning PBN

Since PBN is an extension of boolean network (BN), we first give
a brief introduction of BN. A BN consists of two parts: a set of
nodes (x1, ..., xn), and a list of binary functions (f1, ..., fn). Each
fi contains a number of input nodes (xi

1, ..., x
i
k), where k varies

according to different nodes. Values of input nodes at the time t
keep updating the value of target node xi at the next time (t + 1):

fi(x
i
1(t), ..., x

i
k(t)) = xi(t + 1). (2)

As we can see, the dynamic of a BN is deterministic, and the evolve-
ment of system variable Z(t) (x1(t), ..., xn(t)) completely depends
on the initial condition (x1(0), ..., xn(0)). To avoid the potential
risk caused by the deterministic rigidity of BN, Shmulevich pro-
posed to add probabilistic setting to BN in one of his papers [5].
The basic of PBN is to accommodate more than one functions for
each node. To be more specific, for each node xi, there is a set of
binary functions f i

j where each one is a possible function to deter-

mine the value of at the next time point with certain probability pi
j .

For simplicity, we denote xi as the target, and f i
j as predictors,

F =
�

f i
j

�
j = 1, ...., n, Pr(xi(t + 1) = f i

j (t)) = pi
j , (3)

where n is the number of possible functions of xi.
There are 18 ROIs under our analysis with each one being de-

noted as a node xi (i = 1, 2, ...18). In order to find predictors for
each node xi, we use PBN toolbox implemented by Lhdesmki, and
Shmulevich, which aims at finding best-fit predictors. We assume
that the maximum number of k to be five, and then search boolean
functions with all possible input variable combination for those with
minimal error size (the number of mismatches between predicted
sequence and data sequence). Since each optimal predictor f i

j for
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target xi has the same error size, therefore producing the same Co-
efficient of Determination θi

j . The corresponding probability pi
j is

calculated as follows:

pi
j =

θi
j

n�
j=1

θi
j

. (4)

It is noted that predictors always share the same probability in our
case. Upon obtaining predictors, we need to identify the impact of
one node on another, which is measured in terms of influence value.
A large influence value means that the corresponding node play a
very important role in determining the target value. Consider node xi

with a function set Fi including all predictors f i
j and corresponding

probabilities pi
j (j = 1...n).The influence of xk upon xi - Ik(xi) is

defined as:

Ik(xi) =

n�
j=1

Ik(f i
j ) ∗ pi

j , (5)

where Ik(f i
j ) is the influence of xk on the predictor f i

j :

Ik(f i
j ) = Pr

�
∂f i

j

∂xk
= 1

�
. (6)

This influence calculation is applied all 18 ROIs, thus forming a
18x18 matrix G with each entry Gi,j being the influence of xi on
xj . The influence matrix G enables us to obtain a complete con-
nectivity network. This network can be demonstrated as a weighted
directed graph, with each arrow representing the influence of one
ROI to another. The value for each arrow is the magnitude of the
influence.

2.3. Group Analysis for Inter-Subject Variability

So far we have learned PBN for each individual subject. How-
ever, to meaningfully extrapolate PBN results from one subject to
an entire population (e.g. PD patient group) first requires methods
to meaningfully integrate results from individual subjects and rigor-
ously compare PBNs across group. To address this inter-subject vari-
ability issue, a common and critical challenging problem in many
biomedical studies, we do group analysis for each influence connec-
tion contained in G individually through the Analysis of Variance
(ANOVA).

ANOVA could test the effects of multiple factors on the data.
Identifying the PD-induced connection impairment is doubtlessly
our first priority. Nevertheless, given the fact that our experiments
involve three-frequency tasks, we also need to consider the effects
of different frequencies. As a result, we incorporate two factors in
the ANOVA analysis: frequency and group (e.g. normal, PD on
medicine, and PD off medication), and consider these two factors
independently. The ANOVA will return a p-value for each factor,
and a small p-value below certain threshold (0.05 in our case) indi-
cates the existence of significant difference caused among data by
the corresponding factor.

However, the ANOVA test only offers us general information
that the means of data are significantly different so that they could
reject the hypothesis that they are all the same. We need to know
exactly which pairs of means are significantly different, and which
are not. The multiple comparison method provides us with graphs
indicating the estimated mean of each group from the current factor
with a predefined confidence interval. Two means are significantly
different if their intervals are disjoint, and are not significantly dif-
ferent if their intervals overlap. We should be able to tell which pair

causes the significant difference by looking at those graphs. To fur-
ther investigate the effectiveness of current medicine on the PD, we
use multiple comparison method to estimate the means of each con-
nection in different groups (MNP , MPA, MPB), and evaluate the
performance of medicine by comparing the difference between NP
and PA with the difference between PB and PA. If (MNP −MPA)
shares the same sign as (MNB − MPA), then we can say that the
medicine does alleviate the PD symptoms.

3. FMRI CASE STUDY

3.1. fMRI Data Collection

The study was approved by the University of British Columbia ethics
board and all subjects were gave written informed consent prior to
participating. By using a pressure-responsive bulb which was elec-
tronically connected to a computer, subjects incluing ten normal and
ten PD patients were asked to squeeze the bulb to control the height
of a vertical bar to match a target bar moving up and down in a si-
nusoidal fashion. They lay down and squeezed a rubber bulb at four
frequencies (0.00Hz, 0.25Hz, 0.5Hz and 0.75Hz) for 30-s blocks as
instructed in a pseudo-random order. The patients took the experi-
ment twice, once before medication and the other after medication.
fMRI data of their brain activities during performing the task was
collected with a Philips Achieva 3.0 T scanner. The following eigh-
teen brain regions were selected as the ROIs in the study, both the
left and right: primary motor cortex (M1), supplementary motor cor-
tex (SMA), lateral cerebellar hemisphere (CER), putamen (PUT),
caudate (CAU), thalamus (THA), prefrontal cortex (PFC), anterior
cingulate cortex (ACC), and globus pallidus (GLP).

3.2. Results and Discussions

First, to illustrate the learned PBN for individual subjects, an exam-
ple of PBN for a normal subject performing High frequency squeez-
ing using left hand was shown in Fig. 1. From this figure, we are able
to visually identify important core nodes (ROIs) which play impor-
tant roles on the corresponding fMRI task performing. For the pur-
pose of backbone ROI identification, we employ a simple way here
by detecting the ROIs which represent the largest topology change
if the node is removed from the network. It is noticed that ROI
R PUT , R THA, R CER, L M1, and R PFC are identified
as core regions which is consistent with medical knowledge. The
R CER, L M1 regions represent a ipsilateral motor network that
appears recruited at higher frequencies. The subcortical regions of
R PUT , R THA have been in many prior studies to be important
for the scaling of movements.

We further examine the group analysis results. Based on the
ANOVA test of individual connections, we first identify all influ-
ence connections whose values are significantly different due to ei-
ther group or frequency factor. Here due to the space limitation,
we only report the detail results due to the group factor. Table I
lists all the connections which are identified significantly different
due to the group factor, in which there are three groups including
NP(normal people), PA(PD patients off medicine), and PB(PD pa-
tients on medicine). Some connections in Table I match up with the
results obtained through DBN, such as the connection from R M1
to R SMA. The SMA is considered ”more upstream” in the motor
control and projects to M1.

Another purpose of group analysis here was to determine the
overall group effect of L-dopa medication on PD patients and to
identify the specific connections between ROIs that were affected
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Fig. 1. An example of the learned PBN from the fMRI data for
a normal subject performing a High frequency squeezing using the
left hand.

by medication. Table II indicates that L-dopa does have effects
on some of the connections (R PUT → L PUT , L THA →
L THA, R THA → L ACC, L CER → R M1, R M1 →
R SMA, R GLP → R M1). However, among those connections,
there are several cases where the medicine seems to ”overshot” PD
(R THA → L ACC, L CER → R M1, R GLP → R M1).
In contrast, L-dopa seems to worsen the situation under some cases
such as R THA → R M1, L PFC → R ACC, L ACC →
L PUT , L GLP → R CER, which requires further clinical re-
search.

Table 1. Significantly different connections identified across groups
when performing the left hand squeezing tasks.

Connection P-value

R PUT → L PUT 0.0258
L THA → L THA 0.0181
R THA → R M1 0.0106
R THA → L ACC 0.0169
L CER → R M1 0.0438
R M1 → R SMA 0.0365
L PFC → R ACC 0.0095
L ACC → L PUT 0.0427
L GLP → R CER 0.0197
R GLP → R M1 0.0054

We also examine the effects of the frequency factor. In total, 15
connections are identified as statistically significant difference due
to various frequency levels (H(0.75Hz), M(0.5Hz), and L(0.25Hz)).
We omit the detail here due to the space limitation. Among them,
connection L M1 → L SMA is particularly interesting because
of its monotonous trend along frequency levels. We will further
employ multiple comparison method to find out whether different
groups within the same frequency also indicate significant difference

Table 2. Effects of medicine on brain connections given in Table 1
Connection MNP − MPA MNP − MPA MNP − MPB

R PUT → L PUT 0.1076 0.0241 0.0835
L THA → L THA -0.2596 -0.1935 -0.0661
R THA → R M1 -0.0583 0.083 -0.1413
R THA → L ACC -0.0959 -0.1334 0.0375
L CER → R M1 -0.078 -0.0836 0.0056
R M1 → R SMA -0.1521 -0.1146 -0.0375
L PFC → R ACC -0.0037 0.0727 -0.0764
L ACC → L PUT -0.0065 0.0491 -0.0556
L GLP → R CER -0.0046 0.1275 -0.1321
R GLP → R M1 -0.083 -0.1011 0.0181

between NP and PA, and such difference is somehow improved by
medicine.

4. CONCLUSION

We have presented a Probabilistic Boolean Network (PBN)-based
framework for inferring brain functional connectivity and for reveal-
ing brain region-region interaction profiles observed in PD. The fea-
sibility of the proposed method was demonstrated by applying it to
a real fMRI study in PD. The detected connectivity differences be-
tween the PD group and the control group suggest that brain con-
nectivity can be a sensitive marker for PD development and may
provide a better understanding of the underlying mechanisms of PD.
Future work will focus on improving the group analysis in fMRI us-
ing PBNs. More specifically, different group structure models (e.g.
individual structure model, common structure model) will be investi-
gated for studying inter-subject variability, and more rigorous com-
parisons between different group analysis approaches will be done
statistically.
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