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ABSTRACT

Correlation is often used to measure the similarity between signals
and is an important tool in signal and image processing. In some
applications it is common that signals are corrupted by local bursts of
noise. This adversely affects the performance of signal recognition
algorithms. This paper presents a novel correlation estimator, which
is robust to locally corrupted signals. The estimator is generalized
to multivariate correlation analysis (general linear model, GLM, and
canonical correlation analysis, CCA). Synthetic functional MRI data
is used to demonstrate the estimator, and its robustness is shown to
increase the performance of signal detection.

Index Terms— Correlation, Robustness, Biomedical image
processing, Magnetic resonance imaging

1. INTRODUCTION

Correlation is used in many different applications where similarities
between signals are measured. Examples include speech recogni-
tion [7], fingerprint recognition [1], evaluation of image registration
algorithms [8] and analysis of functional MRI (fMRI) data [4]. In
many of these cases, the correlation between a set of known refer-
ence signals and a newly recorded signal is calculated in order to
classify the new signal as either belonging to the same group as the
reference signals or not. In the biometric applications, the correla-
tion is used to determine whether for example a speaker is a certain
person or not, while in the fMRI context it is used to determine if
a certain part of the brain is activated. The reference signals may
be recorded in advance or calculated from a model. In either case,
it is often possible to ensure a certain quality of these signals since
they are recorded or calculated under controlled circumstances. The
situation is worse for the new signals, which are compared to the
references. These entire signals may have a low signal-to-noise ra-
tio, or sometimes most of the signals are well represented by the
recording, but some segments are corrupted by for example back-
ground noise or radio frequent interference. Since these signals are
recorded while a system is being used, it is often not acceptable to
re-record until signals of good quality are obtained. In a voice recog-
nition system re-recording translates to making users repeat spoken
commands, and in the fMRI application it translates to repeating an
entire experiment. The latter is both troublesome for the patient and
expensive. Hence a way to measure correlations robustly, i.e. in such
a way that corrupted signal recordings have minimal influence on the
correlation estimates, is desirable.

This paper presents an estimator of correlation which is robust to
corrupted segments in the signals. The paper is organized as follows:
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in the next section, the theory of correlation and its generalizations
to multidimensional signals (the general linear model and canonical
correlation analysis) is reviewed. In section 3 the proposed method
is explained. Section 4 presents how the method can be applied to
fMRI data analysis. A discussion of the method is presented in sec-
tion 5, and finally section 6 concludes the paper.

2. THEORY

2.1. Correlation, GLM and CCA

The ordinary Pearson correlation ρ between two one-dimensional
signals x and y is defined as the covariance of the signals divided by
the geometric mean of their respective variances, i.e.

ρ = Corr(x, y) =
Cov(x, y)p
Var(x)Var(y)

(1)

Assuming that both x and y are sampled signals of length N with
zero mean, an estimate of the correlation, ρ̃, can be calculated as

ρ̃ =

PN
i=1 xiyiqPN

i=1 x2
i

PN
i=1 y2

i

(2)

If the variables are not zero-mean, their respective mean values are
simply subtracted prior to this calculation.

The concept of correlation can be extended to multidimensional
variables. The first extension is named the general linear model
(GLM) and handles correlations between a one-dimensional and
a multidimensional variable. The correlation is then defined as
the maximum correlation (disregarding the sign) between the one-
dimensional variable and any one-dimensional projection of the
multidimensional variable, i.e.

|ρ| = max
w

|Corr(x,w
T
y)| (3)

where the vectorw defines the projection of y which maximizes the
correlation with x.

A further generalization is termed canonical correlation analysis
(CCA) [6] and handles correlations between two multidimensional
variables. The canonical correlation is defined as the maximum cor-
relation (still disregarding the sign) between any one-dimensional
projections of the two variables, i.e.

|ρ| = max
wx,wy

|Corr(wT
x x,w

T
y y)| (4)
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In CCA, the estimated correlation ρ̃ can be written as

ρ̃ =
wT

x
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= (5)

=
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where Cxx is the within-set covariance matrix of the multidimen-
sional variable x, Cxy is the between-sets covariance matrix of x
and y etc. The canonical correlation can be calculated by solving
the eigenvalue problem
„

Cxx 0
0 Cyy

«−1 „
0 Cxy

Cyx 0

« „
wx

wy

«
= ρ

„
wx

wy

«

(6)
The first eigenvalue is the estimate of the canonical correlation,
while the first eigenvector is the concatenation of the corresponding
projection directions wx and wy.

Obviously, GLM is obtained as a special case of CCA when
either x or y is one-dimensional. Ordinary correlation is the special
case obtained when both variables are one-dimensional.

2.2. Weighted correlation

Aweight can be assigned to each sample, allowing different samples
to affect the correlation estimate to a different extent. This is useful
if each sample is accompanied by a certainty value, to make less
certain samples affect the correlation estimate less than more certain
ones. Assuming that ci is the certainty (or weight) associated with
the i:th sample, the weighted equivalent of equation 2 becomes

ρ̃ =

PN
i=1 cixiyiqPN

i=1 cix2
i

PN
i=1 ciy2

i

(7)

It is important, however, to consider the mean values of the signals.
Before introducing weights, we could simply subtract the averages
to obtain zero mean signals. Since samples with low weights should
not affect the correlation estimates to a large extent, this is no longer
the case. Instead, the weighted average must be subtracted before
applying equation 7. That is, the correlation should be estimated as

ρ̃ =

PN
i=1 ci(xi − μx)(yi − μy)qPN

i=1 ci(xi − μx)2
PN

i=1 ci(yi − μy)2
(8)

where

μx =

PN
i=1 cixiPN

i=1 ci

(9)

and μy is calculated equivalently.
GLM and CCA are adapted in a similar fashion to accommodate

weighted calculation of correlation coefficients.

3. METHOD

In order to use weighted correlation, the weights of all samples must
be known. In some cases the weights may be available beforehand,
for example if there is a natural way to measure the certainty of each
sample. This may be the case if e.g. a large number of reference
signals is available, since the standard deviation of each sample may
be calculated and its inverse used as certainty. More often, however,
no natural certainty estimate is available. Fortunately, it is possible

to find suitable weights using only the two signals whose correla-
tion is to be calculated, by automatically finding outliers in the sig-
nals. This is accomplished by dividing both signals into a number
of segments. The correlation between the signals is then calculated
in each segment using either Pearson correlation, GLM or CCA de-
pending on the dimensionality of the signals. By the use of weighted
correlation the segments need not be disjoint subsets of the signals,
but can instead be defined by partly overlapping smooth windows.
This is preferable to disjoint subsets since it makes the algorithm
less sensitive to the exact locations of the boundaries between differ-
ent segments. Also, it makes a smooth final weighting of the samples
possible. Naturally, it is important to make sure that the sum of the
weights for all windows is constant for all samples. Figure 1 shows
a one-dimensional signal and a set of functions defining weights for
each segment of the signal. In this example a truncated cos2 func-
tion is used to define each window and consecutive windows overlap
by 50%. More overlap may be desired depending on the specific
application.
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(a) Example signal
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(b) Window functions

Fig. 1. An example signal and a set of possible weighting functions.
The windows are defined by truncated cos2 functions and overlap by
50%.

If we calculate the weighted correlation estimates between this
signal and each of the signals shown in figure 2a-c, using the win-
dows shown above, a number of correlation coefficients are obtained.
These are remapped to the similarity values shown in figure 2d-f.
Obviously, the similarity is approximately the same in all windows
for the slightly noisy signal shown in figure 2a, and approximately
zero in all windows for the noise signal in figure 2b. For the signal in
figure 2c, however, the similarity is significantly lower in the noisy
segment than in the other segments. The ordinary, unweighted, cor-
relation coefficients for these entire signals are 0.99, 0.04 and 0.73,
respectively.
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Fig. 2. Three signals and their similarities (in each window) to the
signal shown in figure 1a.

Let us now focus on the third signal. We have a sequence of sim-
ilarities, one for each window. These values can easily be split into
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two groups: all the relatively high values and the three low values.
Since there are far more high values than there are low ones, it is in-
tuitively obvious that the low values could be considered as outliers
and that the corresponding segments of the signal should have lower
weights. The algorithm arrives at the same conclusion by calculating
the differences between the similarity values of every pair of signal
segments. The weight of each segment is then defined as a decreas-
ing function of the average distance to the similarity values of all
other segments. More formally wk, the weight of the k:th segment,
is calculated as

wk = e
d2

k/(2σ2) (10)
where

dk =
1

L − 1

X
j �=k

|Λ(ρ̃k) − Λ(ρ̃j)| (11)

and
Λ(ρ) =

sign(ρ)

1 − ρ2 + r
(12)

L is the number of segments. The function Λ(ρ), which is similar to
Wilks’ lambda, is used to map the estimated correlation coefficients
to similarity values in order to obtain a more linear scale. That is,
Λ compensates for the fact that a small increase of the resemblance
between two signals with low original correlation increases the cor-
relation more than a small increase of the resemblance between two
signals with high original correlation. r is a regularization parameter
which controls the behavior of Λ when ρ approaches 1.

Finally, the weight of each sample can be calculated as the sum
of all window functions at the sample position, multiplied by the
weight for the respective segments of the signal. That is, the weight
ci of the i:th sample is calculated as

ci =
LX

j=1

wjfj(i) (13)

where fj(i) is the value of the j:th window function at the position
of the i:th sample. Thus for the signal in figure 2c, we end up with
the weighting shown in figure 3a. The weighted correlation is 0.99,
which is very close to the (unweighted) correlation between the first
signal above and the reference signal. The automatically calculated
weights cause the weighted correlation estimate to disregard the out-
liers. If the method instead is applied to any of the two other signals,
an almost constant weighting is obtained. Thus, in those cases the
weighted correlation estimate is the same as the ordinary correlation,
which is what we want for signals whose correlation to the reference
signal is constant.

Figure 3b shows a fourth example of a signal whose correlation
to the reference signal in figure 1a is to be calculated. This signal
consists of only noise, except for a short segment where it is similar
to the reference signal. The weighting obtained is also shown in the
figure. The robust correlation between this signal and the reference is
0.03, which is very close to the correlation between the reference and
the pure noise signal above. Together, the third and fourth examples
illustrate how the underrepresented parts of a signal are disregarded,
and how this may cause the robust correlation coefficient to be either
higher or lower than the ordinary correlation.

The differences between the correlations in different segments
can only be calculated according to equation 11 when the signals
are one-dimensional. When the signals are multidimensional and
GLM or CCA is used instead of the Pearson correlation, the projec-
tion directions wx and wy should also be taken into account. If the
correlation coefficients in two segments are similar butwx or wy is
different, the signals are related to each other in different ways and
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(a) Final weights for the signal
shown in figure 2c.
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(b) Another signal and its
weighting.

Fig. 3. Final weights for the signal shown in figure 2c and for another
signal.

the two segments should be treated accordingly. To handle this, the
distance calculation is replaced by

dk =
1

L − 1

X
j �=k

‖Λ(ρ̃k)wxk
w

T
yk

− Λ(ρ̃j)wxj
w

T
yj
‖ (14)

i.e. the difference between outer products of the projection direc-
tions (multiplied by Λ) is used to determine the distance between
multidimensional correlations. The Frobenius norm is used. In the
one-dimensional case, both wx and wy are 1, and thus equation 11
is a special case of equation 14.

4. APPLICATION TO ANALYSIS OF FUNCTIONALMRI
DATA

Functional MRI is a technique for imaging the neural activity that
arises in the brain when a task such as language processing, mental
calculation or motor coordination is carried out. fMRI is based on
the different magnetic properties of oxygenated and deoxygenated
blood, which can be measured using magnetic resonance imaging
(MRI). In short, a number of images of the brain are acquired while
a subject or patient is instructed to alter between resting and perform-
ing some specific task according to a stimulus paradigm. During the
active state, more oxygen is routed to those parts of the brain which
contribute to the task, and this can be seen as a slightly higher in-
tensity in the corresponding part of the images. This response to the
activation stimuli is referred to as the BOLD (blood oxygen level
dependent) signal. To determine what parts of the brain are acti-
vated by the task, the intensity variation over time in each voxel is
examined, and the correlation to the expected BOLD signal is calcu-
lated. If the correlation in a voxel is sufficiently high, the voxel is de-
clared to belong to a region which is activated by the task. There are
two problems with this approach: the BOLD response is not exactly
known and may even vary between different parts of the brain, and
the acquired images are very noisy. To cope with the first problem,
a subspace model of more than one BOLD signal is often used. This
is where GLM is useful; a voxel should be considered as activated if
its intensity variation has high correlation to any linear combination
of a set of BOLD basis signals. The second problem is alleviated
by spatial filtering of the images. Different methods, ranging from
spatial low-pass filtering [4] to more elaborate methods for adaptive
filtering [3, 9] have been proposed.

The presented estimator of correlation does not provide any im-
provement of the activation detection accuracy in the case where the
signal to noise ratio is constant over time. If, however, the signals
from some or all voxels are corrupted by sudden bursts of noise, for
example induced by instruments used for delivering the stimuli to

455



the patient or subject, the proposed method is able to automatically
identify and disregard the corrupted parts of the signals. To demon-
strate and evaluate the method, synthetic fMRI data was created by
embedding BOLD-like signals in noise. The activated regions are
a rectangle and a circle. Extra noise was added to 7 consecutive
samples out of a total of 40 samples. Most often, fMRI signals are
longer (approximately 100 - 200 samples), but short signals are of
interest in real-time analysis of fMRI data, e.g. when using sliding
window approaches [5]. Simple low-pass filtering was applied to the
data before the correlation between the signal from each pixel and
the BOLD model was calculated. Figure 4a and b show correlation
maps obtained using ordinary correlation and the proposed method,
respectively. Thresholded correlation maps are also shown. Obvi-
ously, better contrast between active and inactive pixels and fewer
misclassified pixels are obtained when using the proposed estimator.
A more quantitative evaluation is presented in figure 5, which shows
the distributions of correlation coefficients when using ordinary cor-
relation (a) and the proposed estimator (b). When the proposed esti-
mator is used, the overlap between the correlation coefficients from
active and inactive pixels is significantly smaller than when ordinary
correlation is used. This indicates that a lower number of misclassi-
fied pixels is obtained when the proposed estimator is used.
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(a) Ordinary cor-
relation
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(b) Proposed esti-
mator
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Fig. 4. Correlation maps (original and thresholded) calculated using
ordinary correlation and the proposed method, respectively.
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Fig. 5. Distributions of correlation coefficients for active and inac-
tive pixels.

5. DISCUSSION

Robust methods for estimating correlations have previously been
proposed, see for example [2]. Most methods, however, do not con-

sider the locality of groups of outliers. The estimator presented in
this paper, on the other hand, controls the influence of each segment
of the signal based on local estimates of the correlation.

For the method to work well, the correlation in the outlier seg-
ments need to be sufficiently different from the correlation in the
other parts of the signal. Otherwise the outliers may not be prop-
erly detected and the weights of all segments will be similar. Then
the proposed estimator will act like ordinary correlation analysis.
The outlier detection is of course influenced by the choice of σ (see
equation 10), but the estimator also depends on the number of seg-
ments and their amount of overlap. If the windows are too narrow,
the local correlation estimates will vary greatly. On the other hand,
if they are too wide, short bursts of noise may not affect the local
correlation enough to be detected as an outlier. Because of this pa-
rameter dependence, the algoritm works best in applications where
the properties of the signal and the noise bursts are well-known and
the parameters can be fine-tuned to match the specific situation.

6. CONCLUSIONS

An estimator of correlation and its multivariate generalizations was
presented. Unlike ordinary correlation estimators, the proposed al-
gorithm is robust to locally corrupted signals. The estimator has
been demonstrated on synthetic functional MRI data and it has been
shown that the robustness increases the performance of signal detec-
tion. Other applications of this estimator include for example voice
and fingerprint recognition as well as evaluation of image registra-
tion.
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