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ABSTRACT
 
This paper presents an approach for selecting optimal 
components for discriminant analysis. Such an approach is 
useful when further detailed analyses for discrimination or 
characterization requires dimensionality reduction. Our 
approach can accommodate a categorical variable such as 
diagnosis (e.g. schizophrenic patient or healthy control), or 
a continuous variable like severity of the disorder. This 
information is utilized as a reference for measuring a 
component’s discriminant power after principle component 
decomposition. After sorting each component according to 
its discriminant power, we extract the best components for 
discriminant analysis. An application of our reference 
selection approach is shown using a functional magnetic 
resonance imaging data set in which the sample size is much 
less than the dimensionality. The results show that the 
reference selection approach provides an improved 
discriminant component set as compared to other 
approaches. Our approach is general and provides a solid 
foundation for further discrimination and classification 
studies.  

Index Terms— Discriminant analysis, projection, 
principle component analysis, magnetic resonance imaging.
 

1. INTRODUCTION 

Neuroimaging techniques, such as magnetic resonance 
imaging (MRI) and positron emission tomography, have 
been utilized both in research and clinic fields, to scan brain 
structure or function for diagnosis and/or prognosis of 
mental disorders. There is growing interest in incorporating 
genetic information and brain images to study the genetic 
influence of an inherited mental disorder [1]. Brain imaging 
data often contains hundreds of thousands of voxels that 
need to be analyzed. Similarly, the amount of genes or 
single nucleotide polymorphisms is typically large too. It is 
desirable to extract features or components from the high 
dimensional data which convey useful information.  

Principle component analysis (PCA) has been used for 
data reduction, component selection, and also considered for 
linear discriminate analysis [2-4]. It can be described in a 
generic form as S=W·X, where S are the extracted 
components, X are the original measurements, and W is the 
projection matrix. It is well known that the best components 
for discrimination are not necessarily those with the largest 
variance. A measure of the component importance from 
discriminant perspective was introduced by Chang [3], and 
further developed by Dillon et. al. [4] and Jolliffe et. al. [2]. 
This measure is essentially a normalized between-group 
difference after projecting to each component’s direction. 
These measures were developed for datasets which have a 
larger sample size than the dimensionality.  

However, there are two limitations about the between-
group difference measure proposed by Chang, when applied 
to  brain image analysis or genetic data. One is related to the 
sample size and the dimensionality of the data. For 
functional MRI (fMRI) data, we consider a group analysis 
in which the dimensionality is the number of voxels, which 
is much larger than the number of subjects. Activation in 
each voxel of a brain image is of interest for a specific task. 
As exemplified in a feature-based classification application 
[5], where brain activation images were used, X is arranged 
as a subjects-by-voxels matrix, S is a components-by-voxels 
matrix, and voxels >> subjects. In such a case, due to 
limited computational resources, the between-group 
difference measure is not tractable without an extra 
modification which will be explained in detail in the 
methods section.  

The other limitation is that the between-group 
differences are defined only for categorical factors. In 
practice, additional non-categorical information, beyond 
group membership, such as age, race, severity of the 
disorder, etc., all can potentially be discriminant factors. 
Many of them are the focuses of biomedical researches. 
Therefore, a new approach is needed for the selection of 
components to discriminate certain groups according to 
different factors from a population using their fMRI brain 
images. 
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In this paper we provide a systemic approach to select
the best components for discrimination, with a flexible
setting. We first introduce the method in section 2 and then
explore its application to fMRI data in section 3. Results
are presented in Section 4, followed by discussion and 
conclusion.

2. METHODS 

2.1. PCA dimensionality reduction using variance

PCA is mathematically defined to transform data into a new
orthogonal coordinate system, such that the greatest
variance of data is captured by the first coordinate, the
second greatest variance by the second coordinate, and so 
on. Consider X, an N-by-D matrix, to be zero mean
observations collected from groups of subjects, N is the
subjects’ number and D is the number of dimensions
(N<<D for our applications). Components of interest here
are the patterns embedded in the data among all the
subjects, which remove the duplicated information among
subjects and preserves the distinct patterns only. To do so, 
PCA is employed as described by (1), where CX is an N-by-
N covariance matrix, W is an N-by-N eigenvector matrix of 
the covariance matrix and  is the corresponding N-by-N
eigenvalue matrix. In a typical use of principle component
for dimensionality reduction, the top M components (M<N)
with the largest eigenvalues (e.g. carrying the most
variance) are selected. The W matrix is then reduced to ,
an N-by-M matrix, and S is reduced from an N-by-D
component matrix to an M-by-D component matrix .
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2.2. Between-group difference selection of component 

Since the components carrying the most variance may not
be the ones best characterizing group differences, variance 
is not the ideal criterion for selecting the best components
for discriminant analysis. An alternative score,  , is defined 
as a selection criteria in (2) by Chang [3]. The vector d is 
the mean difference vector between the respective groups. 
For this case, d is consisted of D elements. Similarly, i is
the ith eigenvector with D elements instead of N elements,
computed through the covariance matrix  (a D-by-D

matrix).

w
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i  is the corresponding ith eigenvalue. The score 
represents the actual between-group mean difference
projected into each eigenvector direction, and normalized
by the component’s variance. For brain images or genetic 
data, the dimension of D is easily over tens of thousands.
Computing the covariance matrix  and its eigenvectors 
can be intractable for regular computers due to the large 

amount of memory required. To avoid the computational
difficulty of computing such a large covariance matrix, a 
substitute approach is proposed in (3) to identify N valid
eigenvectors [6]. Then, the N  scores can be calculated and 
sorted in a descending order. The top M eigenvectors W
are then identified from the top M  scores, as well as their 
paired eigenvectors W. Components are selected 
accordingly by projecting X into the M eigenvectors of W.
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2.3. Reference selection of component 

In this section, we propose a new approach for selecting the 
optimal components for discrimination based on a reference. 
The reference vector is first defined according to the 
subjects’ information. For the simplest case, there are two 
groups: one group of N1 patients and one group of N2
healthy controls (N=N1+N2). If group membership is the 
discriminant criterion, the reference vector can be
constructed as a column vector consisting of -1/N1 (N1 
times) and 1/N2 (N2 times), with a sum of zero, and
assigning equal weight to each group. A new score , is 
proposed in (4) as a measure of discriminant power via the
reference. In this equation, r is the reference vector that 
encodes subjects’ group information, i is the ith eigenvalue 
and wi is the corresponding ith eigenvector. Thus, using the
above case, the score function for each component becomes
Equation (5), projecting the eigenvector into the reference 
direction, scaled by the eigenvalue. 

After sorting the  values in a descending order, as well
as the corresponding eigenvectors, the top M components
are selected for discriminant purpose by projecting X into 
the top M eigenvectors. 
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Since W is the orthogonal eigenvector matrix, we can 
use this orthogonality to derive Equation (6).

1 ; ;TW W X W S (6)
Each column of W is an eigenvector containing the loading 
parameters of each component.
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Thus, the score function can be interpreted as the 
correlation of the loading parameters of the component with 
the reference, scaled with the corresponding variance. In the 
above example, the correlation of the loading parameter 
with the reference is, in fact, the mean difference of the 
loading parameters between two groups. The score 
indicates the component’s variance showing the group 
difference of the loading parameters. 

The reference vector can be very flexible, varying with 
the desired information of interest. For example, if we are 
interested in the severity of schizophrenic disorder, the 
reference can be a continuous number vector of positive and 
negative syndrome scale scores, indicating different levels 
of severity. 

2.4 Evaluation method 

To evaluate the results of difference approaches, a two-
sample t-test on the loading parameters (i.e. eigenvector 
elements) of selected components is performed. We also 
want to test the improvement of the ultimate performance 
(outcome of further study on the components) using the 
selected components. As an example, brain networks 
extracted from components selected by three approaches are 
compared. 

3. APPLICATION

FMRI has been frequently utilized as a noninvasive tool for 
studying schizophrenia. Extracting characteristic features to 
identify the patients helps further understanding and 
treatment of the disorder. We demonstrate feature selection 
approaches for fMRI components in the paper. Data from 
30 schizophrenia patients and 30 healthy controls were 
included. All of them provided written, informed, IRB-
approved consent at Hartford Hospital. 

FMRI data were acquired during an auditory oddball 
(AOD) task at the Olin Neuropsychiatry Research Center at 
the Institute of Living. The AOD task involves detecting an 
infrequent sound (the target) within a series of frequent 
sounds. A full description of task design is available in 
reference [7]. The participants were instructed to respond as 
quickly and accurately as possible with their right index 
finger every time they heard a target stimulus. FMRI scans 
were acquired on a Siemens Allegra 3T dedicated head MRI 
scanner. FMRI images were preprocessed, including 
realignment, normalization and smoothing, using the 
software package SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). 
Target-related contrast images (77026 voxels of interest) 
were used in this study. 

The component number is estimated via a modified 
Akaike's Information Criterion [8]. The top four out of a 
possible 60 components from each approach are assigned to 
represent the discriminant information for the fMRI data. 

4. RESULTS 

Components selected by variance, group membership 
reference (a vector constructed with 1/30, and -1/30) and 
between-group difference are presented here. Table 1 shows 
two-sample t-test results (patients versus controls) for each 
component selected by each approach. With a p-value 
threshold of 0.05, bold components in the table indicate the 
ones with significant group differences (p<0.05). Two 
components are identified in the results of variance 
selection, and two in the results of between-group 
difference selection. Our approach, reference selection, 
found three components with significant group differences. 

Table 1. Two-sample t-test for selected components 
value Com.1* Com.2 Com.3 Com.4 
P 0.0099 0.0001 0.3222 0.6827Variance

selection T 2.6736 -4.1940 -1.0032 -0.4110
P 0.0001 0.0083 0.0742 0.0994Difference

selection T -4.1940 2.7716 1.8196 -1.6873
P 0.0099 0.0001 0.0083 0.3222Reference

selection T 2.6736 -4.1940 2.7716 -1.0032
*Com.# indicates the #th component. 
In addition, we computed a two-sample t-test on all 

possible 60 components, and found that only 3 components 
show significant group differences. All three components 
were in fact selected by the reference approach, plotted in 
Fig. 1(A-C). For display, components were plotted only in 
voxels with an absolute activation Z score larger than 2. Red 
color indicates positive activations, and blue color indicates 
negative activations. Components A and B in Fig. 1 were 
selected by the variance approach, and components B and C 
were selected by the between-group difference approach.

Component A in Fig. 1 shows activations mainly in 
superior temporal gyrus, cingulate gyrus, and medial frontal 
gyrus. These locations are well-known to be activated 
during an auditory task, and present discriminant properties 
for schizophrenia patients [9]. Component B includes 
posterior cingulate gyrus and superior frontal gyrus, which 
are often studied for schizophrenic disorder. Component C 
shows activations mainly in precuneus and uncus that is 
partially consistent with our previous finding [1]. 

5. DISCUSSION AND CONCLUSION 

The components selected using variance present the major 
activation regions during the AOD task, including bilateral 
superior temporal gyri, prefrontal gyrus, cingulate cortex 
and thalamus. However, only two out of four components 
show significant group differences. Considering the 
components selected by the reference approach, one 
component is different from those selected by variance, and 
that is the additional one showing group difference in the t-
test. Therefore, the reference approach selects a complete 
set of discriminant components, and at the same time 
captures as more variance as possible. 
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A B C
Figure 1. Significant components 

Two components from the between-group difference 
selection show group differences, and the other two 
components are different from those selected by variance 
(and do show larger group differences, albeit not 
significant). The reason for that is because the score  is
normalized by variance, such that the order of variance is 
not represented in the selected components. Moreover, the
modification of between-group difference selection in (3), 
has to be executed, which results in more calculations, and
may affect the order of the components. More investigation
is needed. 

It is evident that the reference selection extracted more
discriminate components than the other two approaches.
These components will then contribute to further 
discriminate analysis. For example, independent component
analysis has been utilized for the study of fMRI data [10, 
11], where principle components serve as input features for 
finding independent brain functional networks. If the
interest is the distinguishing brain networks between 
patients and healthy controls, the idea input features are that 
carrying group difference information. As an example, we
applied the components selected by three approaches into
ICA, to extract independent brain functional networks that 
show difference between patients and healthy controls. One
brain network indicating group difference was extracted 
from the results of variance selection, plotted in Fig. 2 (a). 
Three brain networks were extracted from the results of 
reference selection, plotted in Fig. 2 (a,b,c). Three brain 
networks were also extracted from the results of between-
group difference selection, and include similar brain regions 
as those extracted from reference selection, but are sparser. 
Based on two-sample t-tests, brain networks from reference 
selection show lower p-values (average of 0.0028) and
higher t-values( average of 3.60) than those from between-
group difference selection (average p-value of 0.0038,
average t-value of 3.30). 

In summary, the reference selection approach is 
straightforward to implement, especially in the biomedical
filed where the dimensionality is typically larger than the 
number of subjects. The reference function in our approach 
is very flexible, useful under a variety of conditions. Most
importantly, this selection approach provides the most
complete discriminate component set compared with the
other two approaches. It can then be useful for further 

analyzing, understanding, and characterizing the distinctions 
among groups. 

a b c
Figure 2. Brain networks indicating group differences 
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