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ABSTRACT

Baseline drift and physiological (cardiac and respiratory) fluctua-
tions are among major sources contaminating blood oxygenation
level dependent (BOLD) signals in high field functional magnetic
resonance imaging (fMRI). Automatically detecting and removing
them have been long-standing problems. We propose here a new
method, utilizing kernel principal component analysis (KPCA) and
frequency analysis, to detect and remove the noise from fMRI data.
Differing from thermal noise, the main energy of baseline drift and
physiological noise are characterized by the most significant kernel
principal components that also contain information on brain struc-
ture. To maintain the details of brain anatomy, we filter the feature
projections to the components that are found to contain significant
baseline drift and physiological noise. This approach is different
from most discriminant analysis-based denoising methods that re-
move insignificant or noisy components before the reconstruction.
Experimental results show that the proposed method increases the
BOLD contrast and the detection sensitivity of activated voxels.

Index Terms— Dirift, cardiac rate, respiration, aliasing.

1. INTRODUCTION

Detecting activated brain regions is the fundamental task of fMRI
data processing. However, machine thermal noise, heartbeat and res-
piration linked physiological noise, baseline drift, and subject move-
ment can significantly affect the detection of BOLD signal. High
field (> 4 T) scanners provide fMRI data not only with increased
spatial resolution and BOLD contrast, but also with increased phys-
iological noise. Thus, removing the noise is imperative when pro-
cessing high field fMRI data.

Reducing baseline drift might not be difficult because it has
the lowest frequency compared to BOLD signals and physiological
noise, and can be attenuated by a highpass filter. It is not easy to
detect cardiac and respiratory noise in fMRI data because their fre-
quencies and intensity could considerably change with different con-
ditions. Simultaneously recording respiratory and cardiac rates with
fMRI is not technically difficult and has been used in fMRI studies
[1]. Provided the temporal resolution of fMRI is sufficient to criti-
cally sample signal and physiological noise, BOLD signal could be
separated from physiological noise in the frequency domain. How-
ever, the repetition time (TR) of most multi-slice fMRI experiments
is relatively long (over 2 s) in order to obtain sufficient spatial cov-
erage. This results in physiological noise aliased into the frequency
band of BOLD signal. This aliasing happens in both human and an-
imal studies. Fourier or wavelet transform-based frequency analysis
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cannot always guarantee a clear separation between BOLD signal
and aliased physiological noise.

Principal component analysis (PCA) and independent compo-
nent analysis (ICA) project fMRI data into different subspaces that
may distinguish different sources of signals and noise [2, 3]. PCA
decomposes data into uncorrelated components, and ICA performs
the decomposition by removing high order dependencies among the
components. PCA was applied to denoising and detrending in [4, 5].
ICA was suggested for denoising and motion correction in [6, 7].
While PCA and ICA show potential to separate aliased physiologi-
cal noise from BOLD signal, fMRI data usually does not satisfy the
fundamental assumptions that lead to optimal solution for PCA or
ICA. Consequently, the estimated components may contain multiple
sources of signals and noise and therefore are difficult to interpret.
Thus, it is not sufficient to separate individual signal or noise by dis-
criminant analysis alone.

Since either frequency analysis or discriminant analysis along is
not sufficient to separate the baseline drift and physiological noise
from BOLD signals, in this work, we propose to combine nonlin-
ear discriminant and frequency analysis to detect and reduce their
effects. Specifically, kernel PCA (KPCA) [8] is used to decompose
fMRI data into multiple components, and the feature projection to
each component is further analyzed using frequency analysis. After
detecting the projections containing significant energy of baseline
drift and physiological noise, digital filters are designed to attenu-
ate them in these projections. fMRI data are reconstructed using
the method proposed in [9]. Reconstructed data are evaluated using
several numerical approaches, including the number of voxels corre-
lated with the experimental paradigm, and the skewness and kurtosis
of the distribution of BOLD contrast sensitivity (CS) values [10].
Compared with the original fMRI data, the data processed by the
proposed method shows increased BOLD contrast, leading to higher
sensitivity of activation detection.

We first briefly review KPCA, and then introduce the proposed
detection and denoising method. Experimental results are described
next, followed by the conclusions.

2. KERNEL PRINCIPAL COMPONENT ANALYSIS

KPCA is an unsupervised method that uses kernel trick to implement
nonlinear PCA. Given a set of g-dimensional data x; € RY, i =
1,2,--- ,n, the kernel principal components (KPC) are obtained by
calculating the eigenvalue A > 0 and corresponding eigenvector V/
so that:

n

AV =3 ((xi) - V)(xi), 0

i=1
where @ is a nonlinear mapping from R? to a higher dimensional
feature space F. We have V. = Y " | o;®(x;) because V. €
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span{®(x1),- -+, P(xn)}. If we define a n X n matrix K where
each entrance is: K, ; = (®(x;) - ®(x;)), and replace the inner
product with a kernel function k(x;,x;), then the original eigen-
value problem becomes:

Aa = Ka, 2)

where & = (a1, a2, ,an)T. After normalizing A and « in F,
we can compute the feature projections onto the extracted KPCs:

(V- 2(x0) = > alk(xi,x) ®

From experimental studies we found that the polynomial kernel is
appropriate for our analysis. The polynomial kernel is defined as:

k(x,y) = (x-y+1)", “4)

where m is the kernel order.

The reconstruction of KPCA, which is called the pre-image
problem, is more difficult than that of linear PCA. It is typically not
possible to obtain a full and unique reconstruction for KPCA, and
several approximation techniques have been proposed [8, 9]. Here
we use a method developed in [9] to reconstruct fMRI data.

3. THE PROPOSED METHOD

We describe here a KPCA-based method we developed to detect
and remove baseline drift and physiological noise. KPCA can ex-
tract nonlinear structures in fMRI data and overcome the limitations
of linear PCA and ICA for fMRI data analysis [11]. Linear PCA
only considers the second order statistics and cannot account for
the higher order dependencies that usually exist between brain func-
tional units. In ICA, the assumption of statistical independence in
spatial or temporal domain is not always true, and some signals and
noise are not mixed in a linear way.

For denoising, discriminant analysis typically removes less sig-
nificant components before the reconstruction. These are primarily
components related to thermal noise. Components corresponding to
baseline drift and physiological noise are usually the most significant
and contain primary information on brain structure. They cannot be
simply removed or the brain structure information would be lost.
Therefore, we propose to filter the projections to KPCs instead of
removing the corresponding eigenvectors before the reconstruction.

3.1. Detecting Kernel Principal Components of Interest

Prior information, such as the temporal sampling rate (1/TR) of
fMRI time series, the period of each trial, and simultaneously
recorded cardiac and respiratory signals, can be used for automatic
detection and recognition of KPCs that are related to BOLD signal,
baseline drift, and physiological fluctuations. In this work, these
KPCs are detected by evaluating the feature projection to each of
them using the power spectrum.

Multiple trials are often implemented in task-related or event-
related fMRI experiments. The period of each trial determines the
central frequency of expected BOLD signal, denoted by frorp.
The shapes of BOLD responses, which are usually unknown, only
affect the bandwidth of corresponding power distribution. In the
power spectra of feature projections to KPCs, we first locate the fre-
quency point that is closest to feorp, then sum the power of this
and the two neighboring (one lower, one higher) frequency points.
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Finally, the feature projections are ranked in descending order of the
summed power.

fBorp implies an upper bound frequency that can be used to
design a filter to remove slow baseline drift, which is usually charac-
terized by the most significant KPCs. In the power spectra of feature
projections, the energy of baseline drift is estimated by summing the
power from zero frequency to the one closest to 0.5fgorp. The
projections are ranked in descending order of the summed power.

The simultaneously recorded cardiac and respiratory data are
used to detect their effects on fMRI time series. The recorded data
are first re-sampled at the sampling rate as that of the fMRI data,
and the aliased power spectra are then calculated. After locating the
frequency of the highest power, denoted by f,iias, from the calcu-
lated spectra, we find the closest frequency point to farias, and its
lower and higher neighboring frequency points in the power spec-
tra of the feature projections. The feature projections are ranked in
terms of the summed power of these three frequencies. This process
is implemented individually for cardiac and respiratory data.

3.2. Filtering and Reconstruction

We heuristically select the first three projections that are most signif-
icant in terms of baseline drift, cardiac and respiratory effects. Finite
impulse response (FIR) highpass or bandstop filters are designed to
remove low frequency drift or aliased physiological noise from these
projections. All other projections are untouched. If some projections
are simultaneously ranked in the top three in terms of BOLD and
noise power, then the filter band should be carefully considered to
guarantee that energy of BOLD signal will not be attenuated. The
method proposed in [9] is used for the data reconstruction. This
method aims to estimate a pre-image as the reconstructed one by
utilizing distance constraints in input and feature spaces.

3.3. Objective Evaluation

Several approaches are used to measure the improvement achieved
by the KPCA and filtering processes. The first one is the number of
activated voxels detected by correlation analysis. The second is the
contrast sensitivity (CS) of BOLD response [10]:

OSBOLD = AS/[(SEbase + SEstzm)/Q]a (5)

where AS is the signal intensity change in response to the stimu-
lus. SE is the standard error of intensity in baseline or stimulation
period, and is defined as: SE = SD/N%®, where SD is the stan-
dard deviation of the average intensity during baseline or stimulation
period, and N is the number of images during the baseline or task pe-
riod. Additionally, the skewness and kurtosis of the distributions of
CS values are calculated. Given N CS values CS,,,n =1,---, N,
the k" order central moment C* is computed as:

N
Ak_i CS’IL_[)/ k
S PP ©)

where /i and ¢ are the estimated mean and standard deviation. Skew-
ness and kurtosis are the 3¢ and 4*" order central moment, respec-
tively. A positive or negative skewness indicates an asymmetric dis-
tribution of CS values with long right or left tail. A positive or neg-
ative kurtosis means more peaked or flat distribution compared to
a normal distribution. Increased skewness and decreased kurtosis
are expected because of increased and more concentrated positive
CS values after the proposed processing that can attenuate drift and
physiological noise.
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Fig. 1. Power spectra of cardiac (solid line) and respiratory (dotted
line) noise. (a) Sampling rate: 200 H z, heart rate: around 3.5 H z,
respiratory rate: around 2 H z, (b) Sampling rate: 0.5 H z.
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Fig. 2. The projections to the first six KPCs of data.

4. EXPERIMENT AND RESULTS

fMRI data were acquired from a Dutch-belted rabbit brain using a
4.7T Bruker Avance imaging spectrometer. Four contiguous 1 mm
thick slices were acquired using a single-shot gradient echo EPI with
a 48 x 48 mm? FOV and a 128 x 64 matrix size, corresponding to
a voxel size of 375 x 750 um, a 2 second TR and a 20 ms echo
time (TE). The stimulation paradigm was designed to characterize
the BOLD response to a whisker stimulus (65 H z sinusoidal vibra-
tion of whisker rows D through F) and consisted of 22 images off,
20 on, and 20 off. The initial three images were deleted to allow for
longitudinal relaxation equilibration, and ten trials were repeated.
The electrocardiogram (EKG) was recorded by a modified precor-
dial lead using two surface electrodes on either side of the chest wall
close to the heart. The respiration recording was acquired using a
pneumogram sensor on the chest wall where the respiration move-
ment was apparent. The sampling rate for both traces was 200 H z.
Based on the paradigm and TR, the central frequency of BOLD
response is around 0.0085 Hz. The frequency distributions of the
recorded cardiac and respiratory data are shown in Fig. 1 (a). The
central heart rate is around 3.5 Hz. Rabbit respiratory rate ranges
from 0.5 to 1 H z, but under stress it could be much higher, e.g.,2 Hz
in this experiment. After re-sampling them at the rate of 0.5 H z, the
temporal sampling rate of the fMRI data, the aliased spectrum was
calculated as shown in Fig. 1 (b). The highest power of the aliased
respiratory noise is at 0.0035 H z, possibly mixed with frequency
band of baseline drift. A highpass filter can remove their effects
in fMRI data. The highest power of the aliased cardiac noise is at
0.059 H z, which is away from the central frequency of BOLD. Its
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Fig. 3. (a)-(f) Power spectra of the feature projections to the first six
KPCs of data.

potential effects in fMRI data can be removed by a bandstop filter.

When processing fMRI data, the affine transformation-based
registration was first performed to remove subject motion. KPCA
was then applied to all ten trials of data with a 11" order polynomial
kernel, which is experimentally determined. After ranking the KPCs
in descending order according to their eigenvalues, the projections
to the first six KPCs are shown from top to bottom in Fig. 2. The
first projection shows a long-term slow baseline drift, and the third
projection is clearly related to the BOLD response. The power spec-
tra of these projections are shown in Fig. 3. The power of the first
projection is most significant, and the baseline drift and possible
aliased respiration in this projection result in strong frequency com-
ponents below 0.005 H z. The largest peak in Fig. 3 (c) corresponds
to the BOLD response, and it is the same as the estimated central
frequency of BOLD signal.

Based on fguiiqs estimated from the power spectra of aliased
physiological noise, we summed the power around f,jqs in the way
described in section 3.1, and found the top three ranked projec-
tions. For cardiac noise, the projections are, in a descending order
of power, 2, 1, and 3. A bandstop filter was designed to attenuate
them. For respiration and baseline drift, they are projections 1, 2,
and 5. Since the effects from both respiration and drift are below the
central frequency of BOLD signal, we designed a highpass filter to
remove them in projections 1, 2, and 5.

After filtering, the Matlab toolbox Spider ! was used to imple-
ment the reconstruction method described in [9]. We applied correla-
tion analysis to the reconstructed data with a significance level of 1%
and the Bonferroni correction. Correlation map of the original data
is shown in the top image of Fig. 4 (a), with the areas corresponding
to activations in the somatosensory cortex (SC) and somatosensory
thalamic nuclei (STN) encircled. The middle image in Fig. 4 (a) is
the correlation map of the reconstructed fMRI data without filtering
the feature projections. It was found that more activated voxels were

Thttp://www.kyb.tuebingen.mpg.de/bs/people/spider
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Fig. 4. Correlation (a) and CS (b) maps of the original, reconstructed
fMRI data without and with the proposed filtering, are shown from
top to bottom. The encircled areas in the top-left image indicate the
activation in the SC and STN, respectively. Correlation analysis was
performed using a significance level of 1% and the Bonferroni cor-
rection. CS maps show voxels with normalized CS values (between
0 and 1) above 0.5.

detected with an increased number of mis-detections, which might
be due to the incomplete reconstruction. Most mis-detections are
isolated and can be easily removed by a morphological operation.
The bottom image of Fig. 4 (a) shows the correlation map of the re-
constructed data after filtering the feature projections. More voxels
are correlated with the paradigm compared with the top and mid-
dle images of Fig. 4 (a), indicating that filtering can attenuate the
baseline drift and physiological noise, and increase the sensitivity
of activation detection. Table 1 lists the number of activated voxels
in the SC and STN regions detected by correlation analysis. There
are 10 more activated voxels in the SC and 3 more in the STN after
processing the original data using the proposed method.

Table 1. The number of activated voxels (NA) in the SC and STN,
and skewness, kurtosis of CS values before and after the proposed
processing.

NA Skewness Kurtosis
SC | STN | Mean | Std | Mean | Std
Before | 26 6 0.518 | 0.27 | 5.19 1.11
After 36 9 0.522 | 0.15 | 4.40 | 0.60

CS values were also calculated and normalized between 0 and
1. Fig. 4 (b) from top to bottom shows activated voxels (with CS
values above 0.5) in the original, reconstructed fMRI data without,
and with the filtering of feature projections. The skewness and kur-
tosis of the distribution of CS values were computed before and after
KPCA decomposition and filtering. The mean and standard devia-
tion (Std) values of skewness and kurtosis are listed in Table 1. After
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the processing, the mean value of skewness is increased, and that of
kurtosis is decreased. The Std values of both measurements are de-
creased. These observations are consistent with our expectation.

5. CONCLUSIONS

We presented a method using KPCA and FIR filter to attenuate base-
line drift and physiological fluctuations in the fMRI data. In order
to maintain the detailed anatomic structure of brain, none of the
KPCs are removed, and only the projections to those components
containing baseline drift and physiological noise are filtered. This
approach differs from the previous discriminant analysis-based de-
noising methods that remove insignificant components or compo-
nents corresponding to noise before the reconstruction. Experimen-
tal results show that the proposed method can increase the BOLD
contrast sensitivity and consequently the detection sensitivity of ac-
tivated voxels.
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