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ABSTRACT
The blood-oxygenation-level-dependent (BOLD) signal, measured

with the Magnetic Resonance Imaging (MRI), is currently used to

detect the activation of brain regions with a stimulus application,

e.g., visual or auditive. In a block design approach, the stimuli

(called paradigm in the fMRI scope) are designed to detect activated

and non activated brain regions with maximized certainty. However,

corrupting noise in MRI volumes acquisition, patient motion and

the normal brain activity interference makes this detection a difficult

task.

In this paper a new Bayesian method, called SPM-MAP, is

proposed where a joint detection of brain activated regions and

estimation of the underlying hemodynamic impulse response func-
tion (HRF) is proposed.

Monte Carlo tests on its error probability and HRF estimation

with synthetic data are performed and presented.

Index Terms— Functional MRI, Activity Detection, Bayesian

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is the most

prominent method used to detect brain activated regions involved

in particular tasks. This modality relies on changes in blood oxy-

genation and volume, consequence of the hemodynamic response

events related to local neural activity. This signal, called blood-

oxygenation-level-dependent (BOLD), results from the endogenous

magnetic contrast between 0xyhaemoglobin (diamagnetic) and de-

oxyhaemoglobin (paramagnetic). Hence, increased blood volume

reduces the local concentration of deoxygenated hemoglobin caus-

ing an increase in the magnetic resonance (MR) signal on a T2 or

T2*-weighted image [1].

The goal is the visualization of the statistical map representation

of which areas are activated after the stimulatus paradigm applica-

tion during the scan. To obtain the desirable results, several process-

ing steps are usually involved, e.g. image preprocessing (motion and

noise correction), spacial normalization transformation, statistical

tests and the final inferences procedures [2]. Considering the last

two steps, which are the focus of this paper, the general approach

is to express the observed response variable in terms of a linear

combination of explanatory variables (EVs) [3] (which include a

rigid HRF estimate), and makes use of classical statistics (T or F
tests) to infer activity, using e.g. a p-value threshold.
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The inference results are strongly dependent on the HRF esti-

mation, which is usually not known. In the literature there are two

different approaches for the HRF modeling. The most common

approach is purely heuristic, using known functions (e.g. gamma

functions [2], or Gaussian functions to fit the experimental data.

The second approach is physiological, modeling the underlying

physiological process involved in the BOLD signal generation, e.g.

the Balloon Model [4] which is often used and augmented.

In this paper a time invariant linear infinite impulse response
(IIR) model is used, called physiologically based hemodynamic
(PBH) model [5], which is simplicity and physiologically sound.

This paper proposes a new algorithm that jointly detects the brain

activity (which leads to a functional brain map) and the local HRF

estimation, in order to minimize the detection error probability.

In order to estimate the binary (activated or not) information on

each voxel (volume element), a Bayesian approach is used to force

a binary solution for the EV’s and the corresponding optimal HRF

estimating.

Monte Carlo tests are performed using synthetic data, where the

activity detection errors probability and the mean HRF estimations

are presented for several amounts of corrputing.

The rest of the paper is organized as follows. Section II for-

mulates the problem and In Section III the estimation Bayesian

method is presented. Section IV presents the experimental results

and section V concludes the paper.

II. PROBLEM FORMULATION
Each voxel, after the application of a given paradigm (a combi-

nation of stimulus time-courses) may be activated by one or more

applied stimulus (∃k : βk = 1) or may not be activated at all

(∀k : βk = 0).

Fig. 1. BOLD signal generation model.

The signal BOLD associated with each voxel along the time (time
course) is dealt in a 1D basis, independently of the other voxels.

The data observation model, displayed in Fig. 1, is the following

y(n) = h(n) ∗
N∑

k=1

βkpk(n) + η(n) (1)
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where η(n) is additive white Gaussian noise (AWGN), h(n) is the

hemodynamic response function of the brain tissues, pk(n) are the

stimulus signals along time and βk are unknown binary variables

to model the activation of the voxel by the kth stimulus.

The Statistical Parametric Mapping algorithm (SPM) proposed

here, designed in a Bayesian framework and using the maximum a
posteriori (MAP) criterion is called SPM-MAP1. It jointly estimates

the vector b = {β1, β2, ..., βN}T , associated with each voxel

and the corresponding hemodynamic response, h(n), which can

be denoted in vectorial form, h = {h(1), h(2), ..., h(L)}T , where

L is the number of y observations.

The physiologicaly based HRF model [5] used in this paper has

the following third order discrete transfer function

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 + a3z−3
(2)

where the coefficients bk and ak must be estimated.

The estimation process is performed by minimizing an energy

function depending on the binary unknowns βk, on the hemody-

namic response h(n) and on the observations y(n) (see Fig. 1).

The direct estimation of the H(z) coefficients is a difficult task

because it is not easy to define simple priors for these coefficients

based on the desired time response h(n). Therefore, to overcome

this difficulty, instead of estimating the ak and bk IIR coefficients, a

FIR is estimated, g = {g(1), g(2), ..., g(F )}T , with length F ≤ L.

In each iteration this estimated response is projected into the H(z)
space, i.e., the set of coefficients ak and bk are estimated in order

to minimize ‖g(n) − h(n)‖. The first F samples of h(n) are used

to obtain a new estimate of the binary unknowns βk. This process

is repeated until convergence is achieved.

The signal x = {x(1), x(2), x(3), ..., x(L)}T (see Fig. 1) may

be expressed as x = θb where

θ =

⎛
⎜⎜⎜⎜⎜⎝

p1(1) p2(1) p3(1) ... pN (1)
p1(2) p2(2) p3(2) ... pN (2)
p1(3) p2(3) p3(3) ... pN (3)

...
...

... ...
...

p1(L) p2(L) p3(l) ... pN (L)

⎞
⎟⎟⎟⎟⎟⎠ (3)

.

The output vector of H(z), displayed in Fig. 1, z =
{z(1), z(2), z(3), ...z(L)}T , is obtained by convolving h with x,

z(n) = hF (n) ∗ x(n), where hF (n) are the first F samples of

h(n). The output signal may be expressed in the two following

ways i) z = Hx and ii) z = Φh where H and Φ are the following

L × L and L × p Toeplitz matrices respectively

H =

⎛
⎜⎜⎜⎜⎜⎝

h(1) 0 0 0 0 0
h(2) h(1) 0 0 0 0
h(3) h(2) h(1) 0 0 0

...
...

...
...

...
...

0 ... h(p) h(p − 1) ... h(1)

⎞
⎟⎟⎟⎟⎟⎠ (4)

Φ =

⎛
⎜⎜⎜⎝

x(1) 0 0 0 0
x(2) x(1) 0 0 0

...
...

...
... 0

x(L) x(L − 1) ... ... x(L − P + 1)

⎞
⎟⎟⎟⎠ (5)

1Statistical parametric mapping is generally used to identify functionally
specialized brain responses[3]

The observed BOLD signal y(n), y = {y(1), y(2), ..., y(L)}T

can therefore be obtained with the following two ways

y = Ψb + n (6)

y = Φh + n (7)

where Ψ = Hθ and n = {η(1), η(2), ..., η(L)}T is a vector of

independent and identically distributed (i.i.d) zero mean random

variables normally distributed, that is, p(η(k)) = N(0, σ2
y). This

additive white gaussian noise (AWGN) is usually used to model

the corruption process in functional MRI, although other models

may also be used, e.g., Rice and Rayleigh distributions. In this

work we suppose that the motion correction preprocessing step

was efficient enough to remove most of the temporal correlation

between voxels, and so its influence is included and corrected along

with the corruption noise.

III. ESTIMATION

The maximum a posteriori (MAP) estimation is obtained by

minimizing the following energy function

E(y,x(b),h) = Ey(y,x(b),h) + Eb(b) + Eh(x(b)) (8)

where the data fidelity term Ey(y,x(b),h) = − log(p(y|x(b)))
and the prior terms associated to the unknowns to be estimated,

b = {β1, ...βN} and h = {h(0), ..., h(p − 1)} are Eb(b) =
− log(p(b)) and Eh(x(b)) = − log(p(h)) respectively. These

priors incorporate the a priori knowledge about the unknowns to

be estimated, that is, βk are binary and h(n) is smooth.

The estimation process is performed in the following sequential

three steps,

bt = arg min
β

E(y,x(bt−1),ht−1) (9)

g = arg min
h

E(y,x(bt),ht−1) (10)

ht = ProjFIR [ProjIIR(g)] (11)

where ()t means estimation at tth iteration and Proj stands for

the projection operation by using the minimum square error (MSE)

criterion. The ProjIIR problem is not trivial [6]. In this paper the

approximation algorithm proposed by Shanks [6] is used.

The assumption of statistical independence for the observa-

tions means that p(y|x(b),h) =
∏L

i=1 p(y(i)|(x ∗ h)(i)) where

p(yi) ∼ N ((x ∗ h)(i), σ2
y). The parameters βk to be estimated

are also assumed independent, that is, p(b) =
∏N

i=1 p(βk) where

p(βk) is a bi-modal distribution defined as a sum of two Gaussian

distributions centered at zero and one, with σβ
2 variance.

p(βk) =
1

2

[
N(0, σ2

β) + N(1, σ2
β)

]
(12)

because βk are assumed to be binary variables, βk ∈ {0, 1}. In

order to better approximate the binary answer, the σβ parameter

should be as small as possible but numerical stability reasons

prevent the adoption of too small values. The prior term Eb(b)
may therefore be written as

Eb(b) =

N∑
k=1

[
2β2

k − 2βk + 1

4σ2
β

− log

(
cosh

[
2βk − 1

4σ2
β

])]
. (13)
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The smoothness of h(n) is obtained by using a Gibbs distribution

to model h, p(h) = 1
Zh

e−α
∑N

n=2 (h(n)−h(n−1))2 which leads to

Eh(x(b)) = − log(p(h)) = α(Δh)T (Δh) + C (14)

where α is a parameter that tunes the smoothing degree for h(n),

C is a constant, Zh is a partition function and Δ is the following

difference operator

Δ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 ... 0 −1
−1 1 0 ... 0 0
0 −1 1 ... 0 0
...

...
... ... 0 0

0 0 0 ... −1 1

⎞
⎟⎟⎟⎟⎟⎠ (15)

The energy function (8) to be minimized, E(y,x(b),h), has

the following formats in step one and step two respectively

E1 =
1

2σ2
y

(Ψb − y)T (Ψb − y) + Eb(b) + C1 (16)

E2 =
1

2σ2
y

(Φh − y)T (Φh − y) + αhT (ΔT Δ)h + C2. (17)

The MAP estimate is obtained by finding the E(y,x(b),h)
stationary point, ∇E(y,x(b),h) = 0 where (∇) is the gradient

operator.

In the first step b is estimated by solving the following equation

∇bE1 = ΨT (Ψb − y) +
σ2

y

σ2
β

[
b − 1

2
R(b)

]
= 0 (18)

where ∇b is the gradient operator with respect to b and R(b) is

a column vector with N elements

rk = 1 + tanh

[
2βk − 1

4σ2
β

]
(19)

. The solution of (18) is obtained by using the fixed point method

which leads to the following recursion

b̂t = (ΨT Ψ + λI)−1(ΨT y +
λ

2
R(b̂t−1)) (20)

where λ = σ2
y/2σ2

β is a parameter, I is a N dimensional identity

matrix and b̂t is the b estimate at tth iteration.

In the second step, hN (n) is estimated by solving the following

equation

∇hE2 = ΦT (Φh − y) + 2λσ2
yLh = 0 (21)

where ∇h is the gradient operator with respect to h and L = ΔT Δ
(see (15)). The solution of (21) is

g =
[
ΦT Φ + 2λσ2

yL
]−1

ΦT y (22)

where Φ(x(b)) is computed with the b estimate obtained (20) in

step one, b̂t.

Finally g is projected in the space of the admissible responses

of H(z) and afterward re-projected in the FIR space, h =
ProjFIR [ProjIIR(g)]. This projection step is needed because the

HRF smoothness constraints is much more easy to define in the

time domain than in the parameters domain of the IIR model.

However, this FIR response does not necessarily belong to the

responses space of the adopted IIR PBH model, presented in section

II. The g → IIR projection is performed by using the Shanks’s
method [6] and then, re-projection in the FIR space is nothing more

than computing the L first samples of h(n).

These three steps are repeated until convergence is achieved.

To accomplish the desired binary nature of b̂, the following

threshold is applied to β̂k

b̂k =

{
0 β̂k < 0.5

1 otherwise
(23)

and these are the activation parameters that provide information

on whether the brain area represented in the corresponding voxel

was activated by each of the paradigm stimulus or not.

IV. EXPERIMENTAL RESULTS
In this section Monte Carlo tests of the proposed SPM-MAP

method are presented in order to evaluate the performance of

the algorithm. Two synthetic binary images of 128x128 pixels

where generated, which represent a single BOLD slice signal, as

can be seen overlapped in the Fig. 2 (with the error resultant

from the estimation). In it, colored voxels (red, yellow and white)

where activated by, at least, a stimulus paradigm and the black

pixels where not activated at all. So according to the mathematical

notation presented above, red: b = {1, 0}T ; yellow: b = {0, 1}T ;

white: b = {1, 1}T and black: b = {0, 0}T , which is the activation

ground truth to be estimated for each voxel.

The BOLD signal, y(n), is generated by using the model pre-

sented in Fig. 1. A reasonable two stimuli block-design paradigm,

p1(n) and p2(n), of 10 seconds task duration followed by a 30

second rest period each in 5 epochs, were used in order to obtain

a non superposition of p1(n) and p2(n) while allowing for the

BOLD signal to decay to rest. The true impulse HRF signal,

h(n), was generated from a representative IIR, selected from the

PBH estimation on real single-event data [5], and the following

noise energies were used: σy = {0.2, 0.5, 0.7, 0.8, 1}. These noise

energies are better evaluated when compared against the BOLD

signal energy level, which is done with the signal-to-noise ratio
(SNR = 10 log

∑N
1

[(β1×p1(n)+β2×p2(n))∗h(n)]2

σ2
y

) for the two

data cases in which the BOLD signal is present:
∑2

k=1 b(k) ≥ 1
(see Table I ).

This generated synthetic data is equivalent to 2 × 128 × 128 =
32768 independent y(n) time-courses, containing all possible com-

binations for the b vector. These are used on Monte Carlo tests

to compute the Pe(σ, N) = 1
R

∑R
i=1 |b̂i − bi|, and the results

graphically presented in Fig. 2 and in Table I).

σy 0.2 0.5 0.7 0.8 1
SNR(dB) 7.3;11 -0.63;2.6 -3.6;-0.37 -4.7;-1.5 -6.7;-3.5

Pe(%) 0.0427 0.0916 0.168 0.260 4.27

Ṗe(%) 0 0 0.0244 0.0245 1.51

P̈e(%) 0 0 0.0073 0.0061 0.513

Table I. Monte Carlo Pe (IV) of SPM-MAP for several values of

AWGN σy and correspondent SNR values for the
∑2

k=1 b(k) ≥ 1
two different signal energy situations. Spatial correlation correction

is exemplified in Ṗe and P̈e where one and two isolated pixels were

dismissed, respectively.

Table I shows that even for high noise levels the proposed SMP-
MAP method presents a Pe < 0.3%. It is important to point-out that

although the SNR in MRI depends on a large number of variables,

it is usually more than 1dB [2]. So the most realistic σy values

would be situated between 0.2 and 0.5, for the data used. In this
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Fig. 2. SPM-MAP activation detection results for σy = 0.5 (up)

and σy = 1 (down). Brain areas activated by two paradigms (red

and yellow), with a functional overlapping region (white) and non

activated areas (black).

range, the method achieves values of Pe < 0.1%. Furthermore, for

the very high noise amount of σy = 1 (SNR = [−6.7;−3.5])
the Pe stays below 5%, resulting in the bottom image in Fig. 2.

Notice that when looking at Fig. 2, the intuitive notion on the error

probability might seem higher than the refered 0.1% and 0.5%
values, due to the fact that the images are actualy a overlap of two

images.

It is intuitive when looking at the results in figure 2, that

the accuracy of the method can be improved if spacial correla-

tion information is included, removing several of those isolated,

spatially uncorrelated, voxels. For illustration purposes, the Pe

is recalculated after removing areas of one (Ṗe) and two (P̈e)

isolated voxels in an 8 voxels neighborhood. The resultant error

probabilities (see Table I) decreases for all the noise amounts,

yielding null for the 0.2 and 0.5 σy values.

The HRF estimation results are harder to analyze. For each one

of the 32768 voxels a h(n) HRF is estimated, but only the ones

corresponding to activated brain areas βk = 1 are relevant. So,

in the false-negative case, that information is discarded. On the

other hand, the false-positive case is not discarded and the h(n)
tends to follow the random AWGN form, around zero. These last

situations reduce the amplitude of the HRF mean, computed over all

positive estimated voxels β̂k, including false-positives. This effect

can be seen in Fig. 3, where the false-positives effect is removed.

Considering that in real data we do not have information on false-

positives, a correction could be done dismissing estimated h(n)
functions with AWGN distribution, but since the primary goal of

this work is the activation detection, this is left for further works.

Furthermore there is a global decrease in amplitude of every HRF

estimation in the FIR → IIR projection operation, which can be

seen on figure 3 right column. In fact, when there is not an IIR filter

that perfectly describes the estimated g(n) FIR, the IIR computed

by the Shanks [6,7] algorithm is always of lower amplitude. In spite

of all this, the HRF estimation provided reasonable results (Fig. 3)

and proved robust even in high noise levels.

V. CONCLUSIONS
In this paper a new Bayesian method is presented, where the

neural activity detection is jointly obtained along with the HRF

estimation. This approach presents two main advantages: 1) the

activity detection benefits from iterative and adaptative nature of

the HRF shape estimation; 2) it provides local, space variant, HRF

Fig. 3. Mean HRF estimation results considering all β̂k �= 0
estimations (left) and for only the b̂k �= 0 correct ones (right),

for σy = {0.05, 0.5, 1} from top to down. The Real HRF used for

data generation is in green, the estimated FIR average in red, and

the estimated IIR average in blue.

estimation which is more realistic than considering space invariant

HRF’s.

The observations are modeled by the additive white Gaussian

noise (AWGN) model and the stimulus activation indicators are

modeled by binary variables that are estimated. The prior associated

with the binary indicators is a bimodal Gaussian distribution around

the 0 and 1 values to cope with the uncertainty related with the

noise. The HRF is adaptively estimated under the constraint that it

belongs to IIR PBH model [5] space.

Monte Carlo tests using synthetic-1D-block-designed data are

performed and the probability of error, Pe, is computed for different

noise levels. These tests have shown small Pe, less than the ones

obtained with the traditional SPM-GLM [8]. Finally, the average

HRF estimation results showed a robust-to-noise close similarity

between the real synthetic data HRF and the estimated HRF.
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