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ABSTRACT

Analyses of neonatal EEG seizures and subsequent diag-
noses can only be done effectively on long-term recordings
on the condition that the morphology of the EEG signals
are retained. Therefore, a reliable, accurate and efficient
compression and reconstruction technique is necessary to
store and retrieve the data. In this paper, we propose a new
compression technique for neonatal EEG seizure signals via
sampling theory developed for signals with a finite rate of
innovation. Firstly, the EEG seizure signals are modeled
as periodic nonuniform linear splines. Next, through the
sampling and reconstruction scheme developed for signals
with finite rate of innovation, we show that neonatal EEG
seizure signals can be highly compressed while preserving
their morphologies.

Index Terms— Compression, finite rate of innovation,
neonatal EEG, neonatal seizure, sampling and reconstruction

1. INTRODUCTION

Electroencephalography (EEG) is a recording of the brain’s
electric activities [1]. Many research activities have centered
on how to automatically extract useful information about the
brain’s conditions based on the distinct characteristics of EEG
signals. Such applications require acquisition, storage, and
automatic processing of EEG during an extended period of
time. For example, 24-hour monitoring of a multiple-channel
EEG is needed for epilepsy patients.
Neonatal EEG seizure signals consist of paroxysmal

events which are trains of rhythmic repetitive sharp or spike
waves that emerge quite abruptly and have a distinct begin-
ning and end. Seizures can also be trains of slow waves.
These patterns can be divided roughly into four categories
[2]: focal spike and sharp waves(discharges greater than 2
Hz), local low frequency (discharges around 1 Hz), focal
rhythmic (discharges between 0.5 and 15 Hz) and multifocal.
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Fig. 1. Examples of neonatal seizure signals.

Some examples of neonatal EEG signals are shown in Figure
1. These signals have most of their power in the low fre-
quency range between 0.4 and 7.5 Hz and sometimes, as high
as 75 Hz [2]. Thus, traditionally, a minimum sampling rate of
200 Hz is used. At the quantization level of 16 bits/sample,
a 10-channel EEG for a 24-h period would amount to 346
Mega-bytes. Hence, to efficiently store and transmit a huge
amount of data, effective compression techniques are desired.
An excellent survey of the performance of lossless EEG
compression techniques can be found in [3]. While lossy
techniques yield higher compression, because of reliability
considerations, they are not used since the morphology of the
signals is not always well retained.
Analyses and diagnoses of neonatal EEG seizures depend

heavily on long-term EEG recordings on the condition that
the morphology of the signals are retained. Therefore, a re-
liable, accurate and efficient compression and reconstruction
technique is necessary to store and retrieve the data. Recently
a new theory on sampling and perfectly reconstructing signals
with finite rate of innovation (FRI) has been developed [4],[5],
and a compression technique has been formulated for electro-
cardiogram (ECG) signals [6]. This theory has also been ap-
plied to EEG seizure source localisation recently [7]. In this
paper, a new lossy compression approach which closely mod-
els the morphology of the EEG signal is presented based on
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the theory presented in [4]. High compression is achieved be-
cause only relevant information necessary to reconstruct the
signal is sampled and extracted from the signal.
This paper is organised as follows: Section 2 gives a brief

review of the sampling theory and reconstruction methods for
signals with finite rate of innovation. Section 3 models the
neonatal EEG seizure signal and describes how compression
and reconstruction is achieved through sampling theory for
signals with finite rate of innovation. Finally, experimental
results of the proposed compression method is presented in
Section 4 for simulated and actual neonatal seizure signals,
followed by conclusions in Section 5.

2. REVIEW ON SAMPLING SIGNALS WITH FINITE
RATE OF INNOVATION

Consider classes of parametric signals with a finite number
of degrees of freedom per unit of time, which is defined as
the rate of innovation (eg. streams of Dirac pulses, nonuni-
form splines and piecewise polynomials). It is shown in [4],
[5] that although these signals are not bandlimited, they can
be sampled uniformly at (or above) the rate of innovation us-
ing an appropriate kernel, and then perfectly reconstructed by
solving systems of linear equations.

2.1. Periodic stream of Dirac pulses

Consider a stream of K Dirac pulses periodized with period
τ , x(t) =

∑
n∈Z

cn δ(t − tn) where tn+K = tn + τ and

cn+K = cn, ∀n ∈ Z. This signal has 2K degrees of free-
dom per period, thus the rate of innovation is

ρ =
2K

τ
. (1)

By taking a continuous-time periodic sinc sampling kernel
hB(t) = Bsinc(Bt) with bandwidth [−K, K] and B is
greater or equal to the rate of innovation ρ given by (1),
and sampling y(t) = (hB ∗ x)(t) at N uniform locations
t = nT ; n = 0, ..., N − 1, where N ≥ 2M + 1, M =

⌊
Bτ
2

⌋

and M ≥ K , then the samples defined by yn =< hB(t −
nT ), x(t) >, n = 0, 1, ..., N − 1 sufficiently represent x(t)
[4].
The algorithm for sampling and reconstruction of periodic
stream of Diracs is summarised as follows:

Step 1 Sampling of x(t) at the rate of innovation.
Let B = ρ and consider the sampling kernel hB(t) =
Bsinc(Bt), then the sample values are

yn =< hB(t− nT ), x(t) >, n = 0, 1, ..., N − 1. (2)

Step 2 Find 2K +1 contiguous spectral values of x(t) fromN
samples

yn =

K∑

m=−K

X [m] ei 2πmn
N . (3)

Step 3 Determine the locations of the Dirac pulses.
Consider a filter A[m] whose z−transform has K ze-

ros at uk = e−i
2πtk

τ , that is, A(z) =
K−1∏
k=0

(1− uk z−1).

Since the CTFS of the signal x(t) is a linear combi-
nation of K complex exponentials uk, it follows that
A[m] is an annihilating filter and satisfies the following
condition

A[m] ∗X [m] = 0. (4)

The coefficients of the annihilating filter are found solv-
ing Eq. (4) which is equivalent to the following Toeplitz
linear system of equations

K∑

k=0

A[k] X [m− k] = 0, m = −K, . . . , K. (5)

Thus the locations {tk}K−1
k=0 of the Dirac pulses are

given by the roots of A(z).

Step 4 Determine the weights of the Diracs.
The weights {ck}

K−1
k=0 of the Dirac pulses are given by

solving the Vandermonde system of equations given by

X [m] =
1

τ

K−1∑

k=0

cke
−j2πmtk

τ , m = 0, . . . , K − 1. (6)

With the tk’s and ck’s, the original stream of Dirac pulses can
be perfectly reconstructed.

2.2. Nonuniform splines

A signal x(t) is a nonuniform spline of degree R with knots
at {tk}K−1

k=0 if and only if its (R + 1)th derivative is a stream

of K weighted Dirac pulses x(R+1)(t) =
K−1∑
k=0

ckδ(t − tk).

Here, the rate of innovation ρ = 2K/τ .
Consider a continuous-time periodic nonuniform linear

spline x(t) with period τ , containing K pieces of maximum
degree R = 1. By following the sampling method described
in Section 2.1, x(t) is uniquely defined by yn =< hB(t −
nT ), x(t) >, n = 0, 1, ..., N − 1 [4]. The sampling and re-
construction of nonuniform linear splines is similar to that de-
scribed in Section 2.1 with the addition of Step 2a after Step
2 and Step 4a after Step 4:

Step 2a Determine the spectral values of the stream of Dirac
pulses from the spectral values of the nonuniform
splines:
X(R+1)[m] = ( j2πm

τ
)R+1X [m], m ∈ [−K, K] where

R = 1.

Step 4a Integrate (R + 1) times the stream of Dirac pulses to
get the original nonuniform spline.
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3. MODELING NEONATAL EEG SEIZURE SIGNALS
AS SIGNALS WITH RATE OF INNOVATION

Consider the simulated and actual neonatal EEG seizure sig-
nals shown in Figures 2 to 4. The neonatal seizure signals
are simulated according to [8] while the actual seizure signals
are collected from the Paediatric EEG Lab, National Univer-
sity Hospital, Singapore. A Neurofax EEG 9100Kmachine is
used to record 12 channels of EEG data based on the 10-20
system of electrode placement modified for neonates. These
recordings are then sampled at 200Hz.
In order to define the EEG signal according to Section 2.2
such that

x(R+1)(t) =

K−1∑

k=0

ckδ(t− tk), (7)

we need to preprocess the original signal as follows:

Step 1 Estimate the locations {tk}K−1
k=0 and weights {ck}

K−1
k=0

of the peaks and troughs of the original signal.
A point in the signal is considered a maximum peak
(or a minimum trough) if it has the maximal (or min-
imum) value, and was preceded to the left by a value
lower than a threshold value ε = 0.1. The result of the
estimation is a stream of Dirac pulses.

Step 2 Integrate the stream of Dirac pulses two times to get a
nonuniform linear spline approximation of the original
signal.

Thus, we modeled the signal as a nonuniform linear spline
with K pieces. It should be noted that small approximation
errors are introduced here, accounting for the reconstruction
errors in the signals. By using the scheme discussed in Sec-
tion 2.2, we can closely represent the neonatal seizure signals
using only 2K spectral coefficients of their continuous-time
Fourier series (CTFS).

4. RESULTS AND DISCUSSIONS

Results in Figures 5 to 6 show the original, reconstructed sig-
nals using FRI and sinc interpolation, respectively. The mor-
phology and diagnostic information of the signals are better
preserved using the FRI method compared to that obtained
from the sinc interpolation. Table 1 tabulates the comparison
of reconstruction error between the FRI and sinc interpola-
tion method. As shown, the FRI method consistently achieved
lower error compared to the sinc interpolation method. The
Compression Ratio (CR) is defined as the ratio of the length
of the EEG seizure signal and 2K . Table 2 tabulates the CR
achieved and the FRI method is able to achieve a high CR
with low reconstruction error. Entropy is the actual amount
of infomation in a piece of data, and it is defined as

H = −
∑

pi log2 pi, (8)
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Fig. 2. Simulated neonatal seizure signal, τ = 1024, K = 90.
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Fig. 3. Actual neonatal seizure signal 1, τ = 1024, K = 107.

where pi is the probability of the ith element in the data [9].
Effectively, entropy is the lowest lossless compression possi-
ble. Table 3 shows that the original seizure signals need 10
bits to be losslessly compressed. However, the FRI method is
able to achieve savings of an average 2.7 bits with an average
22% degradation. As the morphologies of the signals are not
affected, such degradation is acceptable by medical experts.

5. CONCLUSIONS

A novel compression method for neonatal EEG seizure sig-
nals based on sampling signals with finite rate of innovation
has been proposed. The EEG signal is first modeled as a
nonuniform linear spline. By sampling the modeled signal
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Fig. 4. Actual neonatal seizure signal 2, τ = 1024, K = 54.
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Fig. 5. Actual neonatal seizure signal 1, reconstructed seizure
signal by modeling the signal as a nonuniform linear spline
and reconstructed signal using sinc low pass approximation.
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Fig. 6. Actual neonatal seizure signal 2, reconstructed seizure
signal by modeling the signal as a nonuniform linear spline
and reconstructed signal using sinc low pass approximation.

Table 1. Comparison of reconstruction error with FRI and
sinc kernel low pass approximation for the same compression
ratio.
Signal Simulated Actual Seizure 1 Actual Seizure 2
FRI 18.14% 20.23% 29.79%
Sinc 41.58% 40.51% 31.29%

Table 2. Compression ratio achieved using FRI.
Signal Simulated Actual Seizure 1 Actual Seizure 2
CR 82.42 79.10 89.45

Table 3. Comparison of entropy of the original signals and
FRI compressed signals (bits).
Signal Simulated Actual Seizure 1 Actual Seizure 2
Original 10 10 10
FRI 7.49 7.74 6.75

at its rate of innovation, the EEG signal can be reconstructed
using only 2K contiguous Fourier coefficients of the signal
with a low reconstruction error. Simulation results showed
that the proposed method outperformed the classical sinc in-
terpolation method and maintained important morphological
information of the EEG signals.

6. REFERENCES

[1] H. Berger, ”Uber das Elektrenkephalogramm des Men-
schen,” Arch. Psychiat. Nervenkr., vol. 87, pp. 527 570,
1929.

[2] Eli M Mizrahi, Richard A Hrachovy, Peter Kellaway,
Ed., Atlas of Neonatal Electroencephalography, 3rd edi-
tion, Lippincott Williams & Wilkins, 2004.

[3] G. Antoniol and P. Tonella, ”EEG data compression
techniques,” IEEE Trans. Biomed. Eng., vol. 44, pp. 105
114, 1997.

[4] M. Vetterli and P. Marziliano and T. Blu, ”Sampling Sig-
nals with Finite Rate of Innovation”, IEEE Trans. Signal
Processing, vol. 50, no. 6, pp. 1417-1428, June 2002.

[5] P. Marziliano, ”Reproducible Research: A Case Study
of Sampling Signals with Finite Rate of Innovation”,
Proc. IEEE International Conference on Acoustic,
Speech and Signal Processing (ICASSP), Hawaii, USA,
April 17-20, 2007.

[6] Y. Hao, P. Marziliano, M. Vetterli and T. Blu, ”Com-
pression of ECG as Signal with Finite Rate of Innova-
tion”, in proceeding of 27th Annual Intl. Conf. of the
IEEE Eng. in Medicine and Biological Society (EMBS),
Shanghai, China, September 2005.

[7] D. Kandaswamy, T. Blu, D. Van De Ville, ”Analytic
Sensing: Direct Recovery of Point Sources from Planar
Cauchy Boundary Measurements,” Proceedings of the
SPIE Optics and Photonics 2007 Conference on Math-
ematical Methods: Wavelet XII, San Diego CA, USA,
August 26-29, 2007, vol. 6701, pp. 67011Y-1/67011Y-
6.

[8] N. Stevenson, L. Rankine, M. Mesbah and B. Boashash,
”Newborn EEG Seizure Simulation”, WDIC, February
2005, 145-150.

[9] Shannon, C. E. ”A Mathematical Theory of Communi-
cation.” The Bell System Technical J. 27, 379-423 and
623-656, July and Oct. 1948.

436


